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Introduction

•Fixed point iterations are a common approach to solve (complex) physical sim-
ulations leading to a sequence of a physical quantities like charge densities, poten-
tials, pressures, etc..

xj+1 = g(xj)

•Acceleration methods combine g(xj) with past iterates, xj−m’s, leading to faster
convergence. These methods try to solve f (x) = 0, where

f (x) = x− βg(x).
•Anderson Acceleration[1] is a famous example. Given xi, fi ≡ f (xi), for i =
j −m, · · · , j, we construct

∆xi = xi+1 − xi, ∆fi = fi+1 − fi, ∀i.
Constructing

Pj = [∆xj−m · · ·∆xj−1], Vj = [∆fj−m · · ·∆fj−1].

Computing x̄j = xj −Pjθ
(j), f̄j = fj −Vjθ

(j),xj+1 = x̄j + βf̄j, where

θ(j) = argmin
θ∈Rm

∥fj −Vjθ∥

•Krylov subspace methods construct a subspace of the problem space in which to
find a solution.

Kℓ = span{v,Jv, · · · ,Jℓ−1v}, where v ≡ −f (xj)

•Aim to extend linear accelerators into the nonlinear case for both scientific/ data
science applications with Nonlinear Truncated Generalized Conjugate Resid-
ual (nlTGCR)

nlTGCR

•Generalized Conjugate Residual (GCR)[2] solves Ax = b, by building a se-
quence of search directions pi, i = 1 : j so {Api}i=1:j is orthogonal.

•GCR(k), a variant which restarts every k steps, is equivalent to GMRES(k).

•Going to the nonlinear case[3], we replace the orthogonal {Apj} with Jacobian
for PDE problems and Fisher information matrix for neural network problems.

Pj = [pjm, pjm+1, · · · , pj], Vj = [J(xjm)vjm, · · · ,J(xj)vj]

ALGORITHM: nlTGCR(m,k)
Input: f (x), initial x0
Set r0 = −f (x0)
Compute v = J(x0)r0 ▷ Use Frechet
v0 = v/∥f∥, p0 = r0/∥v∥
for j = 0, 1, 2, ... do

yj = V⊤
j rj

xj+1 = xj +Pjyj ▷ Scalar αj becomes vector yj
rj+1 = −f (xj+1) ▷ Replaces linear update: rj+1 = rj −Vjyj
Set: p := rj+1;
Compute v = Jp ▷ Use Frechet
for i = jm to j do

βij = ⟨v, vi⟩
p = p− βijpi, v = v − βijvi

end for
pj+1 = p/∥v∥, vj+1 = v/∥v∥
If mod j, k == 0, restart

end for

Fisher Information Matrix and Approximations

Generalized Gauss Newton:

•Goal to train NN f (x,θ) with data x and
parameter θ.

•The objective function is

h(θ) = EQ[L(y, f (x,θ))],

where Q is the dataset distribution.

•Then, Generalized Gauss-Newton is

G ≈ 1

m

m∑
i=1

J⊤
i Ji,

where Ji is the Jacobian of f (xi,θ) w.r.t.
θ.

Fisher Information Matrix:

•Using ℓ(y, f (x,θ)) = − log p(y|f (x, θ)),
and conditional density like Gaussian, Pois-
son, and Bernoulli, G = F.

F = E

[
d log p(y|x, θ)

dθ

d log p(y|x, θ)
dθ

⊤
]

= E[DθDθ⊤]

Approximating Fisher Information:

•Only consider DNN with multiple linear
layers.

• In each layer, if we assume A,G are statis-
tically independent:

F = E
[
vec

(
ga⊤

)
vec

(
ga⊤

)⊤]
≈ A⊗G,

whereA is the gradient of the inputm×m,
G is the gradient of the output n×n, F is
of size mn×mn, where the weight matrix
W is m× n.

•Using Kronecker products[4], the inverse of
F is:

F−1 ≈ A−1 ⊗G−1.

•Then this can be done efficiently as

(A−1 ⊗G−1)vec(X) = vec(G−1XA−⊤).

•This approximation to the Fisher informa-
tion matrix can be used as a preconditioner
for training the neural network[5].

Neural Network Problems

2D Poisson Problem: Set-up:{
−∆u = 1 u ∈ B1(0)

u = 0 u ∈ ∂B1(0)

Network Parameters :

• 5 hidden layers

• 30 neurons on each layer

• 2,000 iterations

Method Accuracy

Fisher Approach: 1.79125e-05
ADAM Approach: 8.27138e-04
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Nonlinear Eigenvalue Problems

Bratu Problem:
Set-up:{

−∆u− λeu = 0 in Ω = (0, 1)2

u(x, y) = 0 for (x, y) ∈ ∂Ω

•λ = 0.5

•Using centered FD on a grid of
100× 100 → n = 10, 000

•Hessian is A − λ diag(eu), where
A = [−1, 2,−1] tridiagonal.
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Adaptive nlTGCR

•Bratu problem is almost linear, espe-
cially near convergence.

•Exploit linearized form by

rnlj+1 = −f (xj+1), rlinj+1 = rnlj+1−Vjyj

•Turn on linear updates when dj <
threshold τ ,

dj = 1−
(rnlj )

⊤rlinj
∥rnlj ∥∥rlinj ∥

•Precondition the linearized problem
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Take-aways:

• nlTGCR beats most other methods
for the Bratu problem.

•By exploiting symmetry of Hessian,
nlTGCR is the clear victor.

•Adapting, and preconditioning when
possible, speeds up convergence while
removing function evaluations.

Conclusions

•Extends linear Krylov accelerator TGCR to the
nonlinear setting

•Exploits the short-term recurrence for symmetric
problems

• Implements global convergence strategies

•Adaptable to stochastic gradient-type methods

•Extendable to develop short-term AA algorithms

Future Directions:

•Test Fisher method on
larger DNN problems.

•Prove convergence
bounds on stochastic
problems.

•Compare to more pre-
conditioned SGD algo-
rithms.
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