

Introduction

• Fixed point iterations are a common approach to solve (complex) physical simulations leading to a sequence of a physical quantities like charge densities, potentials, pressures, etc..

$$x_{j+1} = g(x_j)$$

- Acceleration methods combine $g(x_i)$ with past iterates, x_{i-m} 's, leading to faster convergence. These methods try to solve f(x) = 0, where
- $f(x) = x \beta g(x).$ • Anderson Acceleration [1] is a famous example. Given $\mathbf{x}_i, f_i \equiv f(\mathbf{x}_i)$, for i = $j-m,\cdots,j$, we construct

$$c_i = \mathbf{x}_{i+1} - \mathbf{x}_i, \quad \Delta f_i = f_{i+1} - f_i, \quad \forall i.$$

Constructing

$$\mathbf{P}_{j} = [\Delta x_{j-m} \cdots \Delta x_{j-1}], \quad \mathbf{V}_{j} = [\Delta f_{j-m} \cdots \Delta f_{j-1}]$$

Computing $\bar{\mathbf{x}}_{j} = \mathbf{x}_{j} - \mathbf{P}_{j} \boldsymbol{\theta}^{(j)}, \bar{f}_{j} = f_{j} - \mathbf{V}_{j} \boldsymbol{\theta}^{(j)}, \mathbf{x}_{j+1} = \bar{\mathbf{x}}_{j} + \beta \bar{f}_{j}$
$$\boldsymbol{\theta}^{(j)} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{m}} \|f_{j} - \mathbf{V}_{j} \boldsymbol{\theta}\|$$

• Krylov subspace methods construct a subspace of the problem space in which to find a solution.

$$\mathcal{K}_{\ell} = \operatorname{span}\{\mathbf{v}, \mathbf{J}\mathbf{v}, \cdots, \mathbf{J}^{\ell-1}\mathbf{v}\}, \quad \text{where } \mathbf{v} \equiv -f(x)$$

• Aim to extend linear accelerators into the nonlinear case for both scientific/ data science applications with Nonlinear Truncated Generalized Conjugate Residual (nlTGCR)

nlTGCR

- Generalized Conjugate Residual (GCR)[2] solves Ax = b, by building a sequence of search directions \mathbf{p}_i , i = 1 : j so $\{\mathbf{A}\mathbf{p}_i\}_{i=1:j}$ is orthogonal.
- GCR(k), a variant which restarts every k steps, is equivalent to GMRES(k).
- Going to the nonlinear case [3], we replace the orthogonal $\{Ap_i\}$ with Jacobian for PDE problems and Fisher information matrix for neural network problems.

 $\mathbf{P}_j = [p_{j_m}, p_{j_m+1}, \cdots, p_j], \quad \mathbf{V}_j = [\mathbf{J}(x_{j_m})v_{j_m}, \cdots, \mathbf{J}(x_j)v_j]$

ALGORITHM: nlTGCR(m,k)

Input:
$$f(x)$$
, initial x_0
Set $r_0 = -f(x_0)$
Compute $v = \mathbf{J}(x_0)r_0$
 $v_0 = v/||f||, p_0 = r_0/||v||$
for $j = 0, 1, 2, ...$ do
 $y_j = \mathbf{V}_j^\top r_j$
 $x_{j+1} = x_j + \mathbf{P}_j y_j$
 $r_{j+1} = -f(x_{j+1})$
Set: $p := r_{j+1}$;
Compute $v = \mathbf{J}p$
for $i = j_m$ to j do
 $\beta_{ij} = \langle v, v_i \rangle$
 $p = p - \beta_{ij}p_i, v = v - \beta_{ij}v_i$
end for
 $p_{j+1} = p/||v||, v_{j+1} = v/||v||$
If mod $j, k == 0$, restart
end for

 \triangleright Replaces linear update: $r_{i+1} = r_i - \mathbf{V}_i y_i$

ACCELERATION METHODS FOR SCIENTIFIC AND DATA SCIENCE APPLICATIONS

<u>Mitchell Scott¹</u>, Ziyuan Tang², Tianshi Xu¹, Yousef Saad², Yuanzhe Xi¹

¹Department of Mathematics, Emory University ²Department of Computer Science, University of Minnesota

where

 \triangleright Use Frechet

 \triangleright Scalar α_i becomes vector y_i

 \triangleright Use Frechet

Fisher Information Matrix and Approximations

Generalized Gauss Newton:	Appr
• Goal to train NN $f(\mathbf{x}, \boldsymbol{\theta})$ with data \mathbf{x} and	• On
parameter $\boldsymbol{\theta}$.	laye
• The objective function is	•In e
$h(\boldsymbol{\theta}) = \mathbb{E}_Q[L(y, f(\mathbf{x}, \boldsymbol{\theta}))],$	tice
where Q is the dataset distribution.	
• Then, Generalized Gauss-Newton is	
$\mathbf{G} \approx \frac{1}{m} \sum_{i=1}^{m} \mathbf{J}_i^\top \mathbf{J}_i,$	whe G i
where \mathbf{J}_i is the Jacobian of $f(x_i, \boldsymbol{\theta})$ w.r.t.	OI S NA7
$oldsymbol{ heta}$.	VV TT •
Fisher Information Matrix:	• US1
• Using $\ell(\mathbf{y}, f(\mathbf{x}, \boldsymbol{\theta})) = -\log p(y f(x, \theta))$, and conditional density like Gaussian Pois-	L ' 1
son, and Bernoulli, $\mathbf{G} = \mathbf{F}$.	• The
$\mathbf{F} - \mathbb{F} \left[\frac{d \log p(y x,\theta)}{d \log p(y x,\theta)}^{\top} \right]$	
$\mathbf{L} = \mathbf{L} \begin{bmatrix} \mathbf{L} & \mathbf{L} \\ \mathbf{d} \\ $	• 1 h]

Neural Network Problems

2D Poisson Problem: Set-up:

 $\mathbb{E}[\mathcal{D}oldsymbol{ heta}\mathcal{D}oldsymbol{ heta}^{ op}]$

$\int -\Delta u = 1$	$u \in \mathcal{B}_1(0)$
$\int u = 0$	$u \in \partial \mathcal{B}_1(0)$

Network Parameters:

- 5 hidden layers
- 30 neurons on each layer
- 2,000 iterations

Method	Accuracy
Fisher Approach:	1.79125e-05
ADAM Approach:	8.27138e-04

0

 10^{-3}

<u>မ</u>်ိဳ 10⁻¹

References

[1] Donald G. Anderson. "Iterative Procedures for Nonlinear Integral Equations". In: J. ACM 12.4 (Oct. 1, 1965), pp. 547-560. ISSN: 0004-5411. DOI: 10.1145/321296.321305. URL: https://dl.acm.org/doi/ 10.1145/321296.321305 (visited on 10/24/2024).

[2] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. "Variational Iterative Methods for Nonsymmetric Systems of Linear Equations". In: SIAM Journal on Numerical Analysis 20.2 (1983). Publisher: Society for Industrial and Applied Mathematics, pp. 345–357. ISSN: 0036-1429. URL: https: //www.jstor.org/stable/2157222 (visited on 10/24/2024).

[3] Huan He et al. NLTGCR: A class of Nonlinear Acceleration Procedures based on Conjugate Residuals. Mar. 30, 2024. DOI: 10.48550/arXiv.2306.00325. arXiv: 2306.00325. URL: http://arxiv. org/abs/2306.00325 (visited on 10/24/2024).

[4] Charles F. Van Loan. "The ubiquitous Kronecker product". In: Journal of Computational and Applied Mathematics. Numerical Analysis 2000. Vol. III: Linear Algebra 123.1 (Nov. 1, 2000), pp. 85–100. ISSN: 0377-0427. DOI: 10.1016/S0377-0427(00)00393-9. URL: https://www.sciencedirect.com/ science/article/pii/S0377042700003939 (visited on 10/24/2024).

[5] Mitchell Scott et al. Fisher Information Matrix based Preconditioner for Deep Neural Networks. 2024.

roximating Fisher Information:

nly consider DNN with multiple linear ers.

each layer, if we assume A, G are statisally independent:

$$\mathbf{F} = \mathbb{E} \left[\operatorname{vec} \left(\mathbf{g} \mathbf{a}^{\top}
ight) \operatorname{vec} \left(\mathbf{g} \mathbf{a}^{\top}
ight)^{\top}
ight]$$

 $pprox \mathbf{A} \otimes \mathbf{G},$

ere **A** is the gradient of the input $m \times m$, is the gradient of the output $n \times n$, **F** is size $mn \times mn$, where the weight matrix is $m \times n$.

ing Kronecker products[4], the inverse of

$$\mathbf{F}^{-1} \approx \mathbf{A}^{-1} \otimes \mathbf{G}^{-1}$$

en this can be done efficiently as

 $\mathbf{A}^{-1} \otimes \mathbf{G}^{-1}$)vec $(\mathbf{X}) =$ vec $(\mathbf{G}^{-1}\mathbf{X}\mathbf{A}^{-\top})$.

is approximation to the Fisher information matrix can be used as a preconditioner for training the neural network [5].

Nonlinear Eigenvalue Problems

Bratu Problem: Set-up:

$$\begin{cases} -\Delta u - \lambda e^u = 0 & \text{in } \Omega = \\ u(x, y) = 0 & \text{for } (x) \end{cases}$$

• $\lambda = 0.5$

- Using centered FD on a grid of $100 \times 100 \rightarrow n = 10,000$
- Hessian is $\mathbf{A} \lambda \operatorname{diag}(e^u)$, where $\mathbf{A} = [-1, 2, -1]$ tridiagonal.

- Extends linear Krylov accelerator TGCR to the nonlinear setting
- Exploits the short-term recurrence for symmetric problems
- Implements global convergence strategies
- Adaptable to stochastic gradient-type methods
- Extendable to develop short-term AA algorithms

Acknowledgements

DMS-2208412.

 $= (0, 1)^2$ $(x,y) \in \partial \Omega$

Adaptive nlTGCR

- Bratu problem is almost linear, especially near convergence.
- Exploit linearized form by

$$r_{j+1}^{nl} = -f(x_{j+1}), \quad r_{j+1}^{ln} = r_{j+1}^{nl} - \mathbf{V}_j \mathbf{y}$$

• Turn on linear updates when $d_i <$ threshold τ , $\langle nl \rangle \perp lic$

$$d_j = 1 - \frac{(r_j^{nl})^+ r_j^{lin}}{\|r_j^{nl}\| \|r_j^{lin}\|}$$

• Precondition the linearized problem

Take-aways:

- nlTGCR beats most other methods for the Bratu problem.
- By exploiting symmetry of Hessian, nlTGCR is the clear victor.
- Adapting, and preconditioning when possible, speeds up convergence while removing function evaluations.

Conclusions

Future Directions:

- Test Fisher method on larger DNN problems.
- Prove convergence bounds on stochastic problems.
- Compare to more preconditioned SGD algorithms.