
It’s Tensor Time!: A Computational Framework

for Analyzing Structured Matrices

M.T. Scott

September 12, 2022

Abstract

Matrices show up in many different scientific applications, like dis-
cretized PDEs in fluid dynamics and financial mathematics. However,
these matrices are dense and require substantial memory to store them,
as well as computing power to manipulate and solve systems using them.
However, if these matrices have some underlying structure, either by in-
dividual elements or on a block level, we can use specialized techniques
to reduce memory, computing time, or (hopefully) a combination of both.
One such method is to map this structured matrix into a 3+ order tensor,
which can uncover structure that isn’t seen on a lower order matrix. We
then decompose the tensor, and map back into a matrix approximation.
Variations of this framework are used to analyze error, storage, and time
complexity.

1 Motivation

Matrices are everywhere. They can be used in strictly algebraic settings- matrix
groups, linear algebra, etc- but they also show up in differential equations. For
example, we have coupled Ordinary Differential Equations (ODEs)

dx

dt
= ax+ by (1)

dy

dt
= cx+ dy (2)

that can be transformed into [
a b
c d

] [
x
y

]
=

[
dx
dt
dy
dt

]
(3)

Another way matrices show up is through discretizing differential equations.
Basically, this is used to solve the continuous ODE at discrete places. For
example, to discretly solve f ′′(x) = 0, we could use the second-order central
difference approximation to get.

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2
(4)

1

This means that we can take meshpoints xi, and get the approximate solution
at those points, via

1

h2


−2 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 · · · 0 1 −2




x1
x2
...

xn−1
xn

 =


0
0
...
0
0

 (5)

If we want the error to be small, we would take n → ∞. If we wanted to
solve this using a direct solver, we would need n3 operations, and n2 pieces of
memory. That’s bad! We see just from looking at this matrix, that there is
some structure, so using this structure we can speed up matrix-vector products
(mat-vecs).

Main take away: We want to use matrices to model the world, but storage
of a matrix M ∈ Rn×n takes O

(
n2
)

units of memory and to solve them we need

to do O
(
n3
)
flops, or floating-point operations (+,-,×, / done on a computer),

and assuming n is large, this is not feasible. We are trying to find a way that
we get the same (or very good approximation to the) answer that takes less
memory and less computing time. The way I (and my collaborators) decided to
do this is exploit the structure, called “kronecker structure” of these matrices
that arise from these problems. This project does that through the following
schema:

A T

Â T̂

mat2ten

tr-HOSVD≈

ten2mat

We take a matrix that is generated from some technique (in our case we
are looking at random matrix kernels, regular mesh discretations of a fractional
partial differential equation, as well as an adaptive discretation of an FDE),
and we use a bijective mapping from block matrices to become lateral slices
of a third order tensor. Then we use the Tucker, or truncated-Higher Order
Singular Value Decomposition, to take this newly formed tensor and break it
into factor matrices, which we can use to represent the original matrix as a sum
of kronecker products. This technique may look weird but by going to a higher
otder, we uncover this structure, and can use it for faster computations with
less storage and the error in the approximation is the same as the error between
the original matrix and the matrix approximation. All benefits, and the error
is not being magnified!

Okay but what is Kronecker structure? What is a tensor? And why do we
have to go up to higher order dimensions?

2

2 Introduction

2.1 Definitions and Notation

A scalar will be denoted with a lower case letter a ∈ R, an n-dimensional vector
will be denoted with an arrow over top ~v ∈ Rn, an m×n matrix will be denoted
as a bold capital letter M ∈ Rm×n, and lastly any d-way tensor (where d ≥ 3)
will be denoted as a capital caligraphic letter, T ∈ Rn1×n2×···×nd . A matrix
transpose will be denoted as MT or M′. These both mean the element in the
ith row and thejth column, namely aij is now in the aji position.

Definition 2.1 (Matrix). A matrix M is a rectangular array of numbers. We
say that M ∈ Fm×n, if M has m columns and n rows, and each of the mij , or
the element of M in the ith row and the jth column, all belong to some field F.
In this research, we exclusively use F = R.

Definition 2.2 (Tensor). We have already seen a “tensor” before. In fact, a
scalar c, is a 0-way, or 0th order tensor, a vector ~v is a 1-way, or 1st order tensor,
a matrix, M is just a 2-way or 2nd order tensor. Normally, we use the word
tensor to mean a 3+ order tensor. With that definition let A ∈ Rn1×n2×···×nd

be a d-way tensor, with elements ai1,i2,··· ,id .

Definition 2.3 (Kronecker Product). Let A ∈ Rm×p,B ∈ Rn×l. Then the
Kronecker Product A⊗B ∈ R(mn)×(pl) is denoted as

A⊗B =


a11B a12B · · · a1pB
a21B a22B · · · a2pB

...
...

. . .
...

am1B am2B · · · ampB

 (6)

Example 2.1. Consider two vectors ~a,~b ∈ Rn, or maybe it would be helpful to
write them as ~a,~b ∈ Rn×1. We could consider the following as an outer product,

3

or as a kronecker product.

~a~bT =

n∑
i=1

aibi (7)

=


a1
a2
...
an

(b1 b2 · · · bn
)

(8)

=


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn

...
...

. . .
...

anb1 anb2 · · · anbn

 (9)

=


a1~b

a2~b
...

an~b

 (10)

= ~a⊗~b (11)

Remark 2.1. Maybe we don’t want to deal with matrices, so we just make
a new vector ~cT := (~aT ,~bT). Then we save memory as we only have to store
2n units of memory as opposed to n2, but we lost the inherent structure of
the matrix. This isn’t good. Also kronecker products have some super cool
properties, so we don’t have to implicitly form the kronecker product matrix.
As a result, with the kronecker product, we see that mp+nl units of storage, we
can generate an (mn)× (pl) matrix, which normally takes mnlp units of storage
to naively store. This is advantagous assuming that mp+nl < mpnl, as it saves
us memory.

Another type of structure that shows up in our work is matrices that are
Toeplitz on an entry and/or block level. What does that mean?

Definition 2.4 (Toeplitz Matrix). This is also known as “constant diagonal”
matrix. Let A ∈ Rm×n, then A is called Toeplitz if it meets the following
criteria:

A =



a0 a−1 a−2 · · · · · · a−(n−1)

a1 a0 a−1
. . . a−(n−2)

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2
...

. . . a1 a0 a−1
am−1 · · · · · · a2 a1 a0


(12)

4

While finding structure in the elements is great, we also want to find struc-
ture on more of a block level, where “blocks” are submatrices of the overall
matrix.

Definition 2.5 (Block Toeplitz). The definition of the “Block Toeplitz” matrix
is the exact same except we are replacing scalars with matrices themselves. Let
A ∈ Rmp×nl, with m × n blocks, each of these blocks Ai is of the size p × l,
then A is called a Block Toeplitz matrix if it meets the following criteria:

A =



A0 A−1 A−2 · · · A−(n−1)

A1 A0 A−1
. . . A−(n−2)

A2
. . .

. . .
. . .

...
...

. . . A1 A0 A−1
Am−1 · · · A2 A1 A0


(13)

Sometimes we want to access an entire row of a matrix, say the ith row of
a matrix M, we will denote that as Mi:, where the : means all the elements.
Similarly, if we wanted to talk about the jth column, we would denote that as
M:j . This same notation is used for accessing elements of a tensor. But first
what is a tensor?

Remark 2.2. Sometimes it’s hard to visualize these higher order tensors, so
that’s why we will define parts of tensors called sliced and reorganize them to
get to a matrix which is easy to visual.

Definition 2.6 (Slices of a Third order Tensor). A slice of a 3D tensor is simply
a matrix, where we hold one index fixed, and access all of the other elements in
the other two dimensions.

Figure 1: These are the three possible slices of a third order tensor, A.

These slices are matrices of themselves. If we want to denote the ith hori-
zontal slice of a tensor A, we’d write Ai::, the jth lateral slice, we’d write A:j:,
and kth frontal slice, we’d write A::k. The three slices (for the third order tensor
we are dealing with) are visualized in figure 1.

Remark 2.3. There are also ways to access specific vectors in a tensor, which
are called fibers. Also as we go to higher dimension tensors, there are different

5

Figure 2: We can take a m× n matrix and “twist” it into a m× 1× n tensor.
Similarly, we can take an m × 1 × n tensor and “squeeze” out a dimension to
get back to an m× n matrix.

ways to access the information you want, but the principle generalizes nicely. We
will only talk about slices though as they are the matrices to do matric-matrix
products.

2.2 Turning Matrices into Tensors and Back Again

The obvious question is why do we do this? Tensors are harder to view and
visualize, tensor problems are NP-hard, tensors aren’t nicely supported in sci-
entific computing softwares like Matlab. What is the point? Well all of these
are true, but tensors have nice properties. Firstly, most tensor factorizations
are unique, or they have some structure which is helpful in computations. Also,
there are software packages like Tensor Lab and Tensor Toolbox that are suppli-
mental to softwares. Last and most importantly to this project, there might be
some structure that we don’t see by having the data in a 2D matrix. Converting
it to a higher order tensor might uncover that structure, then we can use spe-
cialized techniques and properties of this structure to make computations faster
and more accurate. One such type of structure is Toeplitz and Block Toeplitz.
Another is the Kronecker structure that we talked about.

Once we have these blocks of structure, we can take them and convert them
into lateral slice of a tensor. This process is bijective. We do this by performing a
bijective function on these sub blocks. To turn a matrix into a tensor, we “twist”
it into a higher dimension, and to turn a tensor into a matrix, “squeeze” out
a dimension. This bijective action is visualized in figure 2. So we take these
blocks, twist them into lateral slices and then concatenate these lateral slices to
form a tensor as seen in figure 3.

2.3 Tensor Decompositions

Once we make a tensor framework that has hopefully generated this underly-
ing structure, it is time to find it and illuminate it. This is done through a
tensor decomposition. While there are many different kinds, we are only go-

6

Figure 3: We take these structured submatrices and make them lateral slices
of a tensor. Of course we can take the lateral slices of a tensor and turn them
back into a matrix.

ing to talk about the tr-HOSVD, or the truncated-Higher Order Singular Value
Decomposition. First let’s talk about what is the “normal” SVD.

Definition 2.7 (Singular Value Decomposition). Let M ∈ Rm×n be a rank-
r matrix. Then the singular value decomposition (SVD) is M = UΣVT ,
where U ∈ Rm×m,VT ∈ Rn×n are both real, orthogonal matrices, namely
UTU = Im,V

TV = In. These are known as the left and right singular vec-
tors, respectively. Lastly, Σ ∈ Rm×n is rectangular diagonal matrix with entries
σ1 ≥ σ2 ≥ · · ·σr > 0. These are called the singular values of M. Since M is
real, then the SVD exist!

This is an expensive algorithm and is very costly, so we wouldn’t want to
actually carry out the entire algorithm. Instead, we just use the economy SVD.

Definition 2.8 (“Economy” SVD). Let k ≤ min{m,n}. Then the “econ-
omy”, or “thin”, SVD of a matrix M ∈ Rm×n is M ≈ UkΣkVT

k , where
Uk ∈ Rm×k,Σ ∈ Rk×k,VT

k ∈ Rk×n.

Remark 2.4. While we now have a way of talking about these slices, we can
use that to reorder the structure and make tensors matrices by unfolding them,
and matrices tensors by refolding them. We do that through Tensor unfoldings,
sometimes called “matricization”. We see the different ways of unfolding a third
order tensor in figure 4.

Definition 2.9 (kth-mode Tensor Unfolding). Let A ∈ Rn1×n2×···×nd be a
d-way tensor. Then the kth-mode unfolding is defined as

A(k) ∈ Rnk×n1n2···nk−1nk+1···nd (14)

Note that while the ordering ultimately doesn’t matter as they will just be
different permutations of the same tensor, for consistency, we have chosen that
mode n1 > n2 > · · · > nd, where the “ > ” is used to denote ordering and not
actually larger in magnitude.

7

This abstract definition might be hard to visualize, so we have provided an
example 2.2.

Figure 4: These are the three ways to turn a 3rd order tensor into matrices
using the ordering we’ve chosen.

Example 2.2. Let’s show what the mode three unfoldings could look like. Let
A ∈ R3×4×2, where the frontal slices of the tensor A::i, i = 1, 2 are:

A::1 =

1 4 7 10
2 5 8 11
3 6 9 12

 (15)

A::2 =

13 16 19 22
14 17 20 23
15 18 21 24

 (16)

(17)

8

Then the following are the kth-mode unfoldings (“matricizations”)

A(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 (18)

∈ R3×(4)(2) (19)

A(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 (20)

∈ R4×(3)(2) (21)

A(3) =

(
1 2 3 · · · 10 11 12
13 14 15 · · · 22 23 24

)
(22)

∈ R2×(3)(4) (23)

Definition 2.10 (HOSVD). Once we have unfolded the tensors all of the ways
possible, we perform an SVD computation on all of the matricizations, keeping
the left singular vectors in each case, denoted U(1),U(2),U(3) for the first, sec-
ond, and third matricization, respectively. Then the HOSVD is performed by
computing the core tensor G by

G := UT
(3)U

T
(2)U

T
(1)A (24)

Once we have the core tensor, we can truncated it in any mode possible, or we
can keep it full rank, and then we “undo” the process to get a tensor approxi-
mation, namely

Â ≈ U(3)U(2)U(1)G (25)

Remark 2.5. Then we see from these factor matrices, we can squeeze them,
reshape them, twist them, transpose them, etc, so that we get something of the
form

Â =

J∑
i=1

Ci ⊗Di (26)

where J is the truncation rank of the tr-HOSVD algorithm, which is the upper
summand of Kronecker products. This allows for nice properties so that we can
use to speed up both the time of computation and save on memory storage as
well.

Remark 2.6. The error between
‖A−Â‖

F

‖A‖F
=
‖M−M̂‖

F

‖M‖F
proven by Kilmer and

Saibaba.

Definition 2.11 (Frobenius Norm). Let A be an m×n matrix. The Frobenius
norm of this matrix is the square root of the sums of the absolute squares of all

9

of the elements.

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij |2 (27)

Remark 2.7. Since we are summing over each entry exactly once, it doesn’t
matter what order we are summing the elements in. In fact, we could rearrange
them and as long as we are only summing them once, we are good to go!

Definition 2.12 (Vecotrization). Assume we have some d-way tensor A ∈
Rn1×n2×···×nd . By vectorizing, or turning it into a vector, we see that by stacking
the column vectors, we can get a vector, vec(v) ∈ Rn1n2···nd .

Definition 2.13 (Absolute and Relative Error). Let Â be an approximation
to A, where here A can be a tensor of any order. Then the absolute error,∥∥∥A− Â∥∥∥ is just the distance between the tensor and its approximation using

whatever norm we are using. The relative error is the absolute error inversely

scaled by the norm of the original tensor, namely
‖A−Â‖
‖A‖ .

3 New Work

This is where I picked up the project. There was proof of concept and some
code to show that it worked, but only tested computationally for a small matrix.
But as computational mathematicians, just because it is true mathematically,
doesn’t mean that it is true computationally. The first step of what I did was
try to combine codes of the fractional partial differential equation (FDE) that
was generated from Prof. Hu’s research and see if it was compatable with the
code from Prof. Kilmer and Prof. Saibaba. Seeing that the code to generate the
FDE on a regular mesh is Toeplitz-like, it was no suprise that the code worked
well. In fact, it only took J = 7 to get to machine precision. Now that we
have shown that the regular mesh FPDE works well with this computational
framework, the next question is how does this process scale for larger matrices.
For our process to work we are dependent on a matrix that is a square matrix
of the form 2L × 2L.

However, this begs the question: as we scale the matrix, is it better to
increase the size of the submatrix blocks and keep the number of blocks constant
so the tensor stays relatively square, or is it better to keep the size of the
submatrix blocks constant and increase the number of blocks, so the tensor
looks more like a hotdog as there are more lateral slices? In fact, we strive to
find the best way of partitioning the matrix into sublocks so that we tease out as
much structure as possible. We do this by changing the size of the submatrices
creating either more or less blocks, stored as lateral slices.

It turns out this depends on the kernel, or the problem at hand. For the
kernel which was used in the proof of concept, name;y exp{|X − Y |}, we see
that the bigger blocks method is actually a better method for compressing the

10

Figure 5: Left: As we partition the matrix into more subblocks all of the same
size, there are more blocks which creates more lateral slice. This makes the
tensor look like a hotdog. Right: If we keep a fixed number of blocks but let
them scale up in size, then we end up with a bigger blocks which results in a
hamburger shaped tensor.

information needed. However, this is not universal, as seen by the code for the
FDE. This method actually works better with more blocks. However, we have a
third category that works well with neither case which is an adaptive mesh code
for the FDE. This is hard to investigate as adaptive code doesn’t necessarily
lend itself to being a square matrix of size 2L. This means it takes a while
of tuning these parameters to get one of that size to tensorize, factorize, and
reconstruct. See future directions for more on this.

Mostly, I have spent time analyzing the storage complexity of this algorithm,
which resulted in the following theorem.

Theorem 3.1 (tr-HOSVD approximation’s Size Complexity). Let A ∈ R(mn)×(mn)

be a structured matrix such that it is block n×n with m×m sized blocks, and let
A ∈ Rm×n2×m three way tensor that results from ordering each matrix block as
a lateral slice. Then using the tr-HOSVD algorithm of truncation rank (r1, r2, r3)
which produces three matrices of left singular vecotrs (corresponding to A’s three
matricization modes), which are U,V,W. We define C := VT

:`. Similarly, de-
fine D := UG:`:WT . Then C ∈ Rn×n×J and D ∈ Rm×m×J .

Proof. We see from that A(1) ∈ Rm×n2m elicits an orthogonal matrix of left
singular vectors of U ∈ Rm×m, as the economy SVD takes the left matrix to
be square of size min{d1, d2}, for the matrix of size d1 × d2. Since A is {1, 3}
symmetric, then the economy SVD of A(3), or third mode unfolding elicits
W ∈ Rm×m, as well. Upon truncating, we see U ∈ Rm×r1 ,Q ∈ Rm×r3 .

However, A(2) ∈ Rn2×m2

. Now assuming that we are in the “nice regime”
(n ≤ m), or that the number of blocks are smaller than the size of the blocks,

e.g. B8W64B, we get that V ∈ Rn2

, which can be reshaped into C ∈ Rn×n×J .

11

Figure 6: Visualizing three dimensions can be hard, but four dimensions is whoa!
That is why I like to think of a fourth order tensor as a series of cubes. There
are three dimensions to a cube, and the fourth dimension comes into counting
which cube you are even looking at.

If we enter the bad regime, where V ∈ Rmin{m,n}2 = Rm×m, then we cannot
performed T2 := T1 ×2 V, as the dimensions don’t match. This could be
averted if we put a check in the code to see if n2 ≤ m2, and if not, then switch
svd(A,‘econ’) for svd(A).

Currently, the code from the FDE is “Toeplitz-like” and performs really well
with smaller blocks and more of them. However, this process at the moment
is computationally infeasible. Since we have a 2L × 2L matrix, as we decrease
the block size to 2b × 2b, this means we have 2L−b × 2L−b blocks which have
to be twisted and concatenated into a tensor. This makes the time complexity
O
(
22(L−b)

)
, which is an NP issue, which makes this prohibitably expensive.

Hotdog tensors take more time to deal produce than hamburger tensors, but for
some problems they are the better options. So if we maybe change the order
of the tensor, we could make this more feasible. An example of a fourth order
tensor and one possible unfolding (mode 1) is seen in figure 6.

4 Future Directions

On top of twisting all subblocks into a fourth tensor, we are also looking at
recursively subdividing a matrix and applying the Haar Wavelet transform (I am
being intensionally vague about not discussing what this is) The first application
leads to a fourth order tensor where the first and last indice tells you the row and
column of the element in the submatrix, while the second and third indice tells
you what is the row and column of the submatrix you are in. Then we apply

If you really care, the Haar Wavelet Transform is one of the heavy lifters of this project.
It is an orthogonal matrix that has only two non-zero elements per row (or column, after all
it is orthogonal) and when you use this kronecker product’ed to the oringinal kernel matrix,
we get a really structured matrix that has a lot of nonzero elements.

12

Figure 7

these Haar Wavelet transformation again, which produces four submatrices for
each of the four original submatrices. The indices are as follow: the first and
sixth index are the row and column of the submatrix, the second and fifth indice
tells you which subblock you are in after the first Haar transform, and the third
and fourth indices are the row and column of the submatrix you are in after the
second Haar Transform. This is confusing, so I direct your attention to figure
7, where hopefully this makes more sense.

This is now a sixth order tensor, so good thing we have figured out how to
write a code for any order tensor using the HOSVD algorithm.

5 Acknowledgements

First, I would like to acknowledge Prof. Misha Kilmer, Prof. Xiaozhe Hu, and
Prof. Arvind Saibaba for laying the foundations of this project and supporting
me as a burgeoning mathematician. This project is also partially supported
by the National Science Foundation (NSF) grant # 1821148. Lastly, I want to
acknowledge Taylor Swift for releasing amazing music that made TeX’ing this
report easier.

13

	Motivation
	Introduction
	Definitions and Notation
	Turning Matrices into Tensors and Back Again
	Tensor Decompositions

	New Work
	Future Directions
	Acknowledgements

