A TALE OF TWO TENSORS: USING
HIERARCHICAL AND BLOCK LOW RANK
MATRICES TO MAKE
PRECONDITIONERS AND SAVE
STORAGE

A thesis
submitted by
Mitchell T. Scott

in partial fulfillment of the requirements

for the degree of
Master of Science
in
Mathematics
TUFTS UNIVERSITY
May 2023
© Copyright 2023 by Mitchell T. Scott

Advisor: Professor Misha E. Kilmer

Abstract

Hierarchical matrices are commonly encountered while solving discretized fractional
differential equations, such as those arising in the modeling of turbulence, financial
markets, and continuum mechanics. Unfortunately, such matrices are dense (i.e., a
high percentage of the entries in the matrices are non-zero), so that the cost of storing
and accessing elements in the matrices limits the size of the problems that can be
handled on current computer architectures. However, such matrices are known to
have so-called hierarchical structure: various off-diagonal sub-blocks have low-rank.
We take advantage of this recursive hierarchical structure to accumulate these low-
rank blocks into tensors at multiple levels. For each of these third order tensors,
we form approximated tensor decompositions and use the tensor approximations to
form a matrix approximation. Lastly, we discuss how to leverage this hierarchical

and Kronecker structure to construct a preconditioner for these systems.

il

To those who never stopped believing in me, even when I had.

1l

Acknowledgements

First, I need to acknowledge my advisor, Misha Kilmer, for her unwavering support
and counseling. She has always been so willing to answer my silly questions as my
numerical analysis professor even before and definitely during this thesis process. She
has helped me understand what good research is and can look like. Her willingness to
carve out time out of her extremely busy schedule to answer panicked emails or give
me feedback has meant a lot. I appreciate her compassion and understanding when
I had a busy week and wasn’t able to give results, or when the results I had were
less than promising. On those tough days, our mutual enthusiasm of this project
kept me going. It has been great to have the opportunity to see Misha, in so many
different facets of academia — my professor, my research advisor, and the professor
for whom I am a TA. The lessons you have imparted on me will stick with me as an
academic.

Thank you to everyone who took time to come to the weekly research meetings
and be on my thesis committee — James Adler, Xiaozhe Hu, and Arvind Saibaba.
The recommendations in papers, GitHub repos, books, and your individualized lec-
tures as well as your incredible patience have reinforced my awe for computational
math and allowed me to grow as a mathematician. Additional thanks to James,
Liz, and JC for the opportunities to present my research publicly. I also need to
thank Sebastian Bozlee, Robert Lemke Oliver, and Kasso Okoudjou for being great
professors and mathematical mentors.

Thank you to Sarah, Noah, and Chris. They have been the first line of defense
for graduate students and their support keeps the department functional, fed, and
fulfilled.

The graduate student community here is truly unmatched in terms of support
and camaraderie; thank you all for making my time here so special. I want to thank
my OGSM mentees— Kate and Miranda— they mentored me a lot, more than I

ever did them, never letting me forget my humanity. [am also so appreciative of

v

the huddle room 515 and Torie for our early morning Analysis study-turned-rant
sessions as we embarked on the tumultuous PhD Admissions and Master’s thesis
processes together. We made it! I want to thank Alex for being a friendly face in a
large crowd and teaching me about the life work balance and protecting ourselves in
academia.

Life as a graduate student can also revolve only about school, so I am thankful for
those who gave me opportunities to turn my brain off and have fun outside of JCC. I
want to thank Alicia and Drew for sticking by me for so long and always reminding me
of how far I’ve come and never letting me forget all my other non-scholarly attributes.
Many thanks to the Backman family for always being so welcoming and supportive,
truly providing a home away from home. I am appreciative of Michael who indulged
my math stories any time, anywhere and talked about math departments of old.
Thanks to Abdel for always making sure that schedules worked out so I could put
school first.

Lastly, I am eternally grateful for my parents, Tim and Rhonda. They answer
the phone whenever I call (and on stressful weeks, that’s quite a feat), and they are
always in my corner. They sacrificed so much to get me to where I am, and as |
get older, I am only starting to comprehend the time, the money, and mostly the
emotional labor. They taught me a metric for success from a very young age, a
metric I still use today. I hope they see that I'm being the “best little Mitchell [I]

can be”.

Contents

List of Tables viii
List of Figures ix
List of Algorithms xi

1 Introduction to Tensors and Discretized Partial Differential Equa-

tions 2
1.1 Introduction to Matrices 2
1.1.1 Matrix Structureso 4
1.1.2 Norms and Error 6
1.2 Introduction to Tensors, 7
1.2.1 Turning Matrices into Tensors and Back Again 8
1.2.2 Tensor Ranks and Decompositions 10
1.3 Introduction to discretized PDEs 14
1.3.1 Preconditioning L L 15
1.3.2 Hierarchical Matrices (H - matrices) 17
1.3.3 Fractional Partial Differential Equations 18

2 Research Question - how to approximate and precondition the

dense matrix in an efficient way? 21
2.1 What hasbeendone 21
2.2 Leverage the approximation 25
2.3 Leverage the Structure L L L. 28

3 Research and Experimental Design 30

vi

31 OVerview
3.2 Hierarchical Matrix Algorithm for 2X-sized matrices
3.3 Alternative Algorithms for Matrices not of 2L,
331 Padding
3.3.2 Truncating

4 Research Results

4.1 Storage
4.1.1 Naive o
4.1.2 Low Rank Matrices
4.1.3 Tensor-based Methods
4.1.4 Additional Storage Considerations

4.2 Approximation

4.3 Speedof Mat-vec L

4.4 Preconditioning

5 Summary, Implications, and Conclusions
5.1 Summary e

5.2 Future Work

A1 List of Notation.
A2 MATLAB Code e

A2.1 hmat2ten

Bibliography

30
30
33
34
35

40
40
40
41
42
44
47
20
20

54
54
95

57
57
28
58

59

Vil

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

Using our toy problem, three categories are found 33

Storage accounting for toy problem (6 = 0.613,« = 1.5) using method
(2], . 41
Generalization of storage accounting for toy problem, using hierarchi-
cal low rank blockso o 42

Storage Accounting for toy problem (6 = 0.613, « = 1.5) using hmat2ten

with truncation ranks lev2 e RA7474 1ey3 ¢ R3232x10 | 43
Generalizeation of Storage accounting for toy problem, using tensor
based methods on low rank blocks. 43

Comparing relative errors between the proposed tensor based methods

and literature using a similar compression benchmark. 47

viii

List of Figures

1.1

1.2

1.3

14

1.5
1.6

2.1

2.2

2.3

2.4

A visualization of the different slices of a tensor, A € R™*P*™, Note
that each of these slices is a matrix in its own right.
The original matrix M is mapped into a tensor T, which is then
approximated using a tensor decomposition, T. Lastly, T is mapped
back to a matrix M.
The bijective mapping between an m x n matrix and an m x 1 xn
tensor. The forward function is called "twist" while the inverse
function is "squeeze".
We can twist these submatrices into lateral slices of a tensor. Simi-
larly, we can twist the lateral slices back into a matrix.
The three mode—k unfoldings of a third order tensor, A.
On the left, a non-overlapping Jacobi block pattern is presented. On

the right, an overlapping Jacobi block pattern is presented..

The mesh discretization for fPDEs needs to be adaptive, which
breaks the Toeplitz structured problem.
When a matrix has block structure, it can be approximated a sum
of Kronecker products..
When a matrix has block structure, it can be approximated by or-
thogonal matrices, left and right multiplied by, a block-rank struc-
tured matrix.
A way to approximate our matrix of interest would be to ignore the
strong diagonal blocks, and map the other off-diagonal (hopefully

low-rank) blocks into a tensor to be decomposed.

10

1X

2.5

3.1

3.2

3.3

3.4

(1.) The whole matrix A, (2.) Subdivision of whole matrix A into
four subblocks Aq1, Aj2, Ao, and Age, (3.) Subdivision of A.11 into
four subblocks A.1111, A. 1112, A.1151, and A.1153, (4.) Subdivision
of A.11.11 into four subblocks A.11.1177, A.11.1115, A.11.1191, and
A.11.1199, (5.) The block A.11.11.11 failing the geometric stopping
criterion, stored as full, (6.) All the blocks in A.11.11 failing the ge-
ometric stopping criteria, stored as full, (7.) Subdivision of A.11.12
into four subblocks A.11.1211, A.11.1219, A.11.1297, and A.11.1299,
(8) The block A.11.12.11 satisfying the algebraic rank stopping cri-
terion, twisted into a tensor for later compression, (9) All the blocks
in A.11.12 stored according to their structure, (10) Due to symme-
try and strong diagonal dominance, all the blocks in A.11 stored
according to their structure, A.12 subdivided into four subblocks,
(11) The block A.12.11 satisifying the algebraic rank stopping con-
dition, twisted into a different tensor for later compression, (12)

Repeating this process recursively unto all entries of A have been

For a = 1.5, the resulting matrix in R256*256 visualized in terms of
the relative magnitude of the entries.
The original dense matrix can be split into disjoint parts— the block
diagonal parts (darkest blue), the subblocks that turn low-rank after
three levels (medium blue), and the subblocks that turn low-rank
after two levels (lightest blue),
This is the levels diagram for the adaptive mesh of size 28 x 2%, Each
small block is 32 x 32 and the bigger blocks on the off diagonals are
64 x 64. Once these blocks are found, they are twisted into a tensor
ateach level.
The A4 3) submatrix is placed in the correct location by E%673), and

all white blocks are zero.

3.5

3.6

4.1

4.2

4.3

5.1

The A(q 3) submatrix is placed in the correct location by E%Li%)’ and

all white blocks are zero.
The original dense matrix is approximated by the sum of the exact
full blocks, the approximation of the low rank blocks at level 3, and

the approximation of the low rank blocks at level 2.

Using that our toy problem matrix is SPD, we can reformulate the
matrix to include nonoverlapping blocks along the main diagonal,
which are SPD, so to save storage, we can perform a Cholesky factor-
ization and store one of the Cholesky factors. This cuts our storage
inhalf.
As the fractional index, «, and the size of the problem, n, increase,
the condition number of the resulting full matrix increases exponen-
tially (0=0.613).
By altering the refinement index, 6 from 0.613 to 0.8, the trends of
the condition number of the full stiffness matrix increasing with n, «

are still seen.

An adaptive mesh that hase four levels of low-rank hierarchical struc-

39

51

x1

Xil

List of Algorithms

1 tr- Higher Order Singular Value Decomposition 13
2 Sequentially tr- Higher Order Singular Value Decomposition 13
3 Turning BLR matrices into Tensors 25
4 Turning H-matrices into Tensors 31
5 Turning H-matrices into Padded Tensors 34
6 Turning H-matrices into Truncated Tensors 35

7 Turning Tensors into H-matrices, 36

A Tale of Two Tensors: Using Hierarchical and Block Low Rank Matrices to Make

Preconditioners and Save Storage

Chapter 1

Introduction to Tensors and Discretized

Partial Differential Equations

Many fields - like financial mathematics and fluid dynamics - can be accurately
modeled by fractional partial differential equations (fPDEs). However, like most
interesting problems, there is either no analytic solution to these fPDEs, or it is not
feasible without using a computational method. One such method is to take the
discretization matrix and see if we can extract and exploit any latent structure by
taking this matrix into a higher level tensor. This hidden structure is used to make
computational methods solve the problem at hand 1.) using fewer floating-point
operations flops, and 2.) using less memory. The following thesis is an attempt to

investigate a tensor-based numerical method to solve these fPDE problems.

1.1 Introduction to Matrices

Definition 1.1.1 (Matrix) A matriz M is a two dimensional rectangular array of
numbers. We say that M € F"™ " if M has m rows and n columns, and each of the
m;j, or the element of M in the i™ row and the j"* column, all belong to some field

F. In this research, we exclusively use F =R.

Matrices have many operations one can perform on them, such as addition, scalar
multiplication, matrix multiplication, which are all well known. A lesser known

operation, and one that is of great interest to this project is the "Kronecker Product".

Definition 1.1.2 (Kronecker Product) Let A e R™? B e R™*. Then the

Kronecker Product A ® B e R0 4o denoted as

a11B a12B alpB
ao1B aB - a2pB

A®B-= (1.1)
amlB amgB ampB

It is straight forward to show just from the definition of Kronecker product how the

product of two Kronecker Product matrices interact:

Corollary 1.1.3 Assuming the dimensions of the following matrices work out, so

that for A,B,C,D, we have

(A®B)(CeD)=(AC)® (BD) (1.2)

Another operation that is useful is that of turning a matrix into a vector, which

will elicit useful properties.

Definition 1.1.4 (Vectorization) Assume we have some matriz A € R"™". By
vectorizing, or turning it into a vector, we see that by stacking the column vectors,

we can get a vector, vec(v) € R™",

This concept of vecotrizing a matrix combined with Kronecker products allows us

the following property.

Corollary 1.1.5

vec(AXBT) = (B ® A)vec(X) (1.3)

Another useful operation we can perform on a matrix is a factorization, especially

the singular value decomposition.

Definition 1.1.6 (Singular Value Decomposition) Let M € R"™" be a rank-r
matriz. Then the singular value decomposition (SVD) is M = UXVT | where U e

R™™ VT ¢ R™™ are both real, orthogonal matrices, namely UTU =1,,, VIV = 1,,.

These are known as the left and right singular vectors, respectively. Lastly, 3 ¢ R™™
is rectangular diagonal matriz with entries o1 > 09 > -+ > 0, > 0. These are called
the singular values of M. It is important to note that the SVD always exists, when

M c Rmxn‘

It is expensive to compute the singular value decomposition (SVD) algorithm [12],
so we wouldn’t want to actually carry out the entire algorithm. When the singular
values decay quickly, we can approximate the rankr matrix M with an approxima-
tion rankk, k < 7 matrix M. This allows us to only deal with the first & left and

right singular vectors, and the largest k singular values.

Definition 1.1.7 (Rank-k Approximation) Let k < r < min{m,n}. Then the
rank-k approximation of a matriz M € R™" s M ~ UkEng, where Uy, e R™k 3 ¢

kxk T k
RF*k VT ¢ RFxn.

While this is certainly an approximation of the original matrix, we can actually
say something stronger. In fact, according to 1.1.8, this is the best rank-k approxi-

mation to the matrix, M.

Theorem 1.1.8 (Eckart-Young, 1936) Let A € R™" be a rank r—matriz. The
best rank k-matriz, where k < n s the k largest singular values, accompanied with

the k largest singular vectors. Moreover,

Olt1s for the |-|5 norm.
|A - Akl = (1.4)

V102, for the ||| p norm.

1.1.1 Matrix Structures

This whole project is about extracting structure from matrices so that we can exploit

that structure. Let’s define some common structure that appears in my work.

Definition 1.1.9 (Toeplitz Matrix) This is also known as "constant diagonal”

matriz. Let A e R™", then A is called Toeplitz if it meets the following criteria:

ao a—l a_2 cee a—(n—l)
ay ap a-1 - A—(n-2)
az ai
A= (1.5)
a_q a_o
al a a_1
am_l a2 al ao

While finding structure in the elements is great, we also want to find structure

on more of a block level, where "blocks" are submadtrices of the overall matrix.

Definition 1.1.10 (Block Toeplitz) The definition of the "Block Toeplitz" matriz
1s the exact same except we are replacing scalars with matrices themselves. Let
A e R™P*™ yith m x n blocks, each of these blocks A; is of the size px 1, then A is

called a Block Toeplitz matriz if it meets the following criteria:

Ay Ay Ay - A
A1 A() A_1 A—(n—Q)
A=| A, : (1.6)

A, Ay A

Ap - Ay A1 A

Remark 1.1.11 Tt is not hard to see that we can write this block matrix using an
alternative formulation with the concept of a Kronecker product. For example, the

last block matrix could also be

1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0
A=10 ~ -~ =~ |®Ag+|0 -~ . . |®A_+- (1.7)

0O 1 0 0 0 1

0 0 0 1 0O - 0 0 O

:ZEZ-®A¢ (1.8)

where E; € R™*" are matrices that "place" the blocks matrices where they need to
be. This means that the block Toeplitz matrix A can be thought of as a sum of
Kronecker products with those blocks. While the example above was demonstrated
with a block Toeplitz matrix, this general framework works for any block matrix

(even if the blocks are different sizes) just by changing the E; "placement matrices".<

Definition 1.1.12 (Symmetric Matrix) A matriz A € R™" is symmetic if and

only if A =AT, or for every i,j in the row space of A, then aij = Qjj.

Definition 1.1.13 (Positive Definite Matrix) A symmetric matriz A € R™" is

positive definite if for all nonzero real-valued vectors zZ, then 2T AZ > 0.

Remark 1.1.14 If a matrix is both symmetric and positive definite, we will call
them SPD. A property of SPD matrices is that all eigenvalues A; > 0, which means

that it is invertible, as it is of full rank. ¢

1.1.2 Norms and Error

Definition 1.1.15 (Frobenius Norm) Let A be an mxn matriz with rankr. The

Frobenius norm of this matriz is the square Toot of the sums of the absolute squares

of all of the elements, or the square root of the trace of AT A, or the square root of

the sums of the singular values of the matriz. Mathematically,

m n

(lijQ .
\ Z;jle | (1.9)

=/tr(ATA) (1.10)
= \ éaf(A) (1.11)

|A[F:

Definition 1.1.16 (Spectral Norm) Let A be an mxn matriz. The spectral norm

of this matriz is the square root of the largest eigenvalue of ATA or the largest

singular value of A. Mathematically, we have

Ay =V Amaz (ATA) (1.12)

= Oz (A) (1.13)

Remark 1.1.17 This is called the spectral norm because it is related to the spectral

radius of a matrix, which is the largest magnitude of an eigenvalue, [Amax|- &

Lemma 1.1.18 By application of the above definitions paired with the definition of

Kronecker products, one can show that for matrices A e R™" B e RP** | we have

|A @B, = [Al,|B], (1.14)

|A®B[r=[Al|Blr (1.15)

Theorem 1.1.19 (Sherman-Morrison-Woodbury Formula, 1949) Let A e R™"
be an invertible matriz, and let U e R™* 'V e R¥*" where k <n. If we want to up-
date A by UV, then assuming (Ik +VA’1U) 1s tnvertible, we have a numerically

cheap way of computing (A + UVT)_1 if we know what A™' is already, which is
(A+UVT) " = A - AU(L + VAT'U) VAT (1.16)

Definition 1.1.20 (Absolute and Relative Error) Let A be a matriz approz-

imation to the matriz A. Then the absolute error,

‘A—AH 15 just the distance
between the matriz and its approximation using whatever norm we are using. The
relative error is the absolute error inversely scaled by the norm of the original matriz,

, 1a-Al
namely TA]

1.2 Introduction to Tensors

Although the definition of a "tensor" might have different meanings to different
fields, we will motivate our definition by examples. A scalar ¢, is a 0-way, or 0

order tensor, a vector ¥ is a 1-way, or 15 order tensor, a matrix, M is just a 2-way

P " P P

Horizontal Slices Lateral Slices Frontal Slices

Figure 1.1: A visualization of the different slices of a tensor, A € R"™*P*™ Note that
each of these slices is a matrix in its own right.

or 2 order tensor. For convention, we use the word "tensor" to mean a 3+ order
tensor, and refer to anything less than this by their more common names— scalars,

vectors, or matrices.

Definition 1.2.1 (Tensor) With that definition let A € R">">XMd pe q d-way

array, with elements a;, iy ...i,-

Sometimes we want to access an entire row of a matrix, say the i'! row of a
matrix M, we will denote that as M;., where the : means all the elements. Similarly,
if we wanted to talk about the 7' column, we would denote that as M:;. This same

notation is used for accessing elements of a tensor.

Definition 1.2.2 (Slices of a Third order Tensor) A slice of a 3™-order tensor
s simply a matriz, where one index is held fized, and access all of the other elements

in the other two dimensions.

If we want to denote the i*" horizontal slice of a tensor A, we'd write A;., the j™
lateral slice, we’d write A, and k' frontal slice, we’d write A.j. The three slices

(for the third order tensor we are dealing with) are visualized in Figure 1.1.

1.2.1 Turning Matrices into Tensors and Back Again

A lot of the matrices that we encounter coming from natural and practical sources are
abundant in structure. However, this structure may not be inherent from the begin-
ning, especially when we are dealing with large dense matrices. These redundances

motivated researchers like Kilmer and Saibaba to come up with a methodology to

M Matrix-to-tensor T
%T tr-HOSVD
M T

Tensor-to-matrix

Figure 1.2: The original matrix M is mapped into a tensor 7, which is then ap-
proximated using a tensor decomposition, 7. Lastly, 7 is mapped back to a matrix
M.

twist

—
sgueeze

M —
n 1

Figure 1.3: The bijective mapping between an m xn matrix and an m x 1 x n tensor.
The forward function is called "twist" while the inverse function is "squeeze".

exploit this latent structure [18]. The example that was presented was a symmetric
positive definite matrix which was also block Toeplitz, so dividing the entire matrix
into these blocks, then converting to a tensor allowed the researchers to isolate only
the non-redudant information necessary to reconstruct the matrix. Then, they com-
pressed the tensor representation and mapped the tensor representation back into a
matrix, thereby uncovering other latent structure. An outline of this procedure is
given in Figure 1.2.

Once we have these blocks of structure, we can take them and convert them into
lateral slice of a tensor. This process is bijective. We do this by performing a bijective
function on these sub blocks. To turn a matrix into a tensor, we "twist" it into a
higher dimension, and to turn a tensor into a matrix, "squeeze" out a dimension.
This bijective action is visualized in Figure 1.3. So we take these blocks, twist them
into lateral slices and then concatenate these lateral slices to form a tensor as seen
in Figure 1.4.

Even though Figure 1.4 gives a visual understanding of the bijective mapping

in [18], it fails to demonstrate the novelty. If the first matrix in the Figure had no

Figure 1.4: We can twist these submatrices into lateral slices of a tensor. Similarly,
we can twist the lateral slices back into a matrix.

underlying block structure, then this is exactly what would happen, but this is not
the case we are dealing with. In fact, for a block Toeplitz matrix, most of the blocks
are repeated and don’t need to be included in the tensor. Recall that a block Toeplitz
matrix is constant along the diagonals, so it is uniquely specified by mn — 1 blocks-
the p blocks along the first row, and the n blocks along the first column, exlcuding
the repetition of the (1,1) block. The method in [18] was designed specifically for
block-structured matrices, so the tensor to be decomposed stores fewer entries then
the (possibly dense) starting matrix. The tensor stores only non-redundant blocks,
arising from the block structure, symmetry arguments, etc. Our goal will be to

generalize their approach for a special class of dense matrices.

1.2.2 Tensor Ranks and Decompositions

For matrices, the rank is well defined and can be computed in polynomial time in the
size of the matrix. For tensors, however, there is more than one notion of rank, and
which rank depends on the decomposition used. Once we make a tensor, it is time to
find the rank and illuminate it. This is done through a tensor decomposition. While
there are many different kinds of tensor decompositions, we are only going to talk

about the CANDECOMP /PARAFAC (CP) decompositon [15] and the tr-HOSVD,

10

Mode-1 unfolding

b b b
c
R b| o P ; Mode-2 unfolding
a a a a
b c
c
c Mode-3 unfolding
a a a
b

Figure 1.5: The three mode—k unfoldings of a third order tensor, A.

or the truncated-Higher Order Singular Value Decomposition [11]. First we need
to define a few more properties that arise from higher dimensions. While we now
have a way of talking about these slices, we can use that to reorder the structure
and make tensors matrices by unfolding them, and matrices into tensors by refolding
them. We do that through tensor unfoldings, sometimes called "matricization". We

see the different ways of unfolding a third order tensor in Figure 1.5.

Definition 1.2.3 (k**-mode Tensor Unfolding) Let A € R"M2X >N pe g -

way tensor. Then the k™-mode unfolding is defined as

A(k:) c Rnkxn1n2~~-nk_1nk+1~-nd (1_17)

Note that the ordering ultimately doesn’t matter as they will just be different per-
mutations of the same tensor. As long as each unfolding is performed, the work is

consistent.

Definition 1.2.4 (mode-k product) The mode-k product is a way of denoting a

tensor-matriz product, where the tensor is unfolded in the k™ mode and left multiplied

11

by a matriz, assuming matriz dimensions match. Mathematically,
AXZ'U = UA(z) (1.18)

Now that we have defined this operation, the following higher-order SVD follows
nicely. This is the natural generalization of the standard SVD which we already

defined in 1.1.6.

Definition 1.2.5 (CP decomposition [15]) The CP decomposition, which stands
for CANDECOMP (canonical decomposition)/PARAFAC (parallel factors) is ex-
pressing the tensor as a finite sum of rank - one tensors. For a tensor X e RI*/*K

we define the CP decomposition as

R
X~ ZaTobrocr (1.19)
r=1

where 0 < R < 00,a, € R b, e R' ¢, e RE forr=1,2,-- R, and o is the standard

vector outer product.

Definition 1.2.6 (HOSVD [11,18]) Once we have unfolded the tensors along modes

1,2 and 3, we perform an SVD computation on all of the matricizations, keeping the
left singular vectors in each case, denoted U, V., W for the first, second, and third
matricization, respectively. Then the HOSVD is performed by computing the core

tensor G by

Gi=Ax; Ul xa VT xg WT (1.20)

Once we have the core tensor, we can truncated it in any mode possible, or we can
keep it full rank, and then we "undo” the process to get a tensor approrimation,

namely

.Zl\% ?xlﬁxQVX3W (1.21)

*Since the rest of the paper deals only with third order tensors, we just say modes 1,2, and 3,
but this idea is easily extendible to any dimension tensor.

12

The standard algorithm of tr-HOSVD is given below in pseudocode in Algorithm
1, and the modified algorithm of sequentially tr-HOSVD is given in Algorithm 2.
While both are presented for third order tensors with truncation ranks (r1,7r2,73),

the algorithms are easily extendable to whatever order tensor you have.

Algorithm 1 tr- Higher Order Singular Value Decomposition

Require: A e R*""2*™3 truncation ranks r;,¢=1,2,3
A; < matricization of A along mode i
U; < SVD(A;, econ)

G« Ax; UZ-T > Construct Core
A« Gx U > Construct Approximation
A« .Z(l:rl,l:m,lzrg) > Truncate
return A

Algorithm 2 Sequentially tr- Higher Order Singular Value Decomposition

Require: A e R™"2*™ truncation ranks r;,¢=1,2,3
A; < matricization of A along mode 1
U; < SVD(A;, econ)

Uy < U(:,1:15) > Sequentially Truncate
G« Ax; UZ-T > Construct Core
A« gxi U, > Construct Approximation
return A

Remark 1.2.7 Depending on when you truncate the core, you get two different out-
comes. If you truncate the core before you use it to form the tensor approximation,

that is called sequentially tr-HOSVD. However, if you truncate the final tensor ap-

proximation, that is called just a tr-HOSVD. Sequentially truncating a tensor results

in less memory and suprisingly similar results. ¢

When wanting to construct a low-rank approximation of a tensor, it is imporant
to know the rank or calculate it easily. However, approximating the tensor by a
sum of rank 1 tensors! (which is the CP decomposition among other names) is NP-
hard [14]. In fact, in a more general sense, tensor rank is NP-complete for finite fields
and NP-hard over R and C [16], which is not good since our problems are all over R.

Other properties related to tensors, like finding or appoximating eigenvalues, finding

A rank-1 tensor for a third order tensor is a three-way outer product among three vectors

13

or appoximating singular values, or approximating the spectral norm of a tensor
within a certain accuracy are also known NP-hard [14].

It would be nice to know that this technique is not costing us anything in terms
of approxation error, because then that would not be advantagous. From the schema

presented in Figure 1.2, we have the following:

Lemma 1.2.8 (Kilmer, Saibaba, 2021) Let A ¢ R gnd let Tg[-] and
Me[-] be the associated tensor-to-matriz and matriz-to-tensor mappings respectively.
Let X = T¢[A] and let T ~ T¢[A] be a tensor approximation computed using any ap-

propriate method. Then the error in the matriz approrimation A-= Me[T] satisfies

|A-Afp=[X-T|F.

While this theorem is not going to be directly applicable to our matrix approx-
imations because our matrix-to-tensor mapping is hierarchical, it motivates us to

come up with a similar result for our matrix-to-tensor approximations.

1.3 Introduction to discretized PDEs

While most of this research is based in numerical linear algebra and tensor decom-
positions, the matrices that we are dealing with come from a discretized fractional
PDE. The following definitions give an approach to how these matrices are actually
constructed. Fractional PDEs are just a specific type of differential equation, so we
would expect that the solution should have some smoothness, but how is this actually
computed on a computer. Since computers are finite-memory machines; a "mesh"
or "grid" is constructed. partitioning the domain, and the solution is computed at
those specific meshpoints using a finite element schema. Now, let’s touch briefly on
what meshes can be.

If we want the error to be small, we would take n — oo. If we wanted to solve
this using a direct solver, we would need n? operations, and n? pieces of memory.

That’s bad! We see just from looking at this matrix, that there is some structure,

14

o using this structure we can speed up matrix-vector products (mat-vecs).

1.3.1 Preconditioning

As was just stated solving a linear system A = f simply by computing A~! and
applying it to f is a direct solve that requires (’)(n3) flops; however, this method
is numerically instable and is very rarely used in practice. The closest might be
performing the matrix factorization A = PLU, and then performing the respective
forward and backward substitutions to solve the system. To combat the direct
methods, iterative methods are often the solver of choice because of the reduced cost
in each iteration. The golden standard of iterative methods are Krylov subspaces
methods as at each iteration, the cost is simply a matvec (A x (A""'z) for the i
iteration). Then the total cost of solving the linear equation is just the number of
iterations until convergence is met times the cost of the matvec.

A common approach for these iterative methods is matrix splitting, where you
take the matrix A = M — N, where M is not only invertible but also easy to invert.
For example, in Jacobi’s method, M = D which is just the diagonal entries, which
is easy to invert as you can just take the inverse of each element. Another example
is Gauss-Seidel’s method where M = D — U, where U is the strict upper triagular
parts of the matrix. Since this is a triangular system, the forward triangular solve
is used. This means we are hoping that we have fast convergence which comes
from the condition number of the matrix M~'A to be smaller. That is the point of

preconditioning - to converge to the final solution faster.

15

Definition 1.3.1 (Preconditioner) Assuming P, A are SPD, like our case, a preconditioner

P of A is a matriz such that cond(P™1A) < cond(A)

Definition 1.3.2 (Left Preconditioned System) If we are trying to solve Ax =

b, then the left preconditioned system is

P! (Az-b)=0 (1.22)

A candidate for a possible choice of preconditioner (not a solver for our fPDE)

might be a stationary iterative method.

Definition 1.3.3 (Stationary Iterative Methods) A stationary iterative method

is one where the iteration scheme can be manipulated into
#F) =Bzt 4o (1.23)

The examples above of Jacobi and Gauss-Seidel are called stationary iterative methods
since B = M™IN, and B = (D - U)™'L respectively, where L is the strict lower

triangular part of A.

Remark 1.3.4 While of course we don’t use preconditioners for something as simple
as a stationary iterative method, we can use the idea to make a preconditioner. These
methods might be beneficial in the long run because they are guaranteed to converge

for strongly diagonally dominant systems. ¢

The reason that matrix splitting and stationary methods are mentioned is that
the method proposed in this thesis (Chapter 3) can be thought of as a matrix split-
ting, and we can leverage that to use as a possible preconditioner. Mathematically,
we have that our matrix splitting preconditioner, P~! could be applied to solve our
system P~1% would be a few steps of the stationary iterative method with our matrix

approximation. (To see how this relates to a matrix splitting, please consult Figure

3.6.)

Definition 1.3.5 (Block Jacobi Preconditioning) As mentioned above, the Ja-
cobi, or block, preconditioner is just approzimating the matriz by taking only the
diagonal entries, which is easy to invert. However, most scalar entried subroutines

have a block analogue; Jacobi is not unique. The block Jacobi preconditioner is tak-

ing the blocks along the main diagonal and using those to approxrimate the matriz.
Since we are ignoring all the other blocks, we just have to invert the matrix subblocks
along the diagonal. One could easily see how this would work for non-overlapping

block, but some alterations have been shown for overlapping diagonal blocks1.6.

Ao Ao

A
A;

A:

As

AS A4

As
A n

Figure 1.6: On the left, a non-overlapping Jacobi block pattern is presented. On the
right, an overlapping Jacobi block pattern is presented.

Remark 1.3.6 This might be benefical to the system we are analyzing later as we
have an SPD system that is strongly diagonally dominant. Lastly, with Kronecker
products, it is well know that if B has some sort of entry-wise structure, then regard-
less of what structure A possesses, A ® B will inherit the block analogue of whatever
entry-wise structure B has. Further discussion of Block Jacobi preconditioning is

relegated to section 4.4. &

1.3.2 Hierarchical Matrices (H - matrices)

As a general matrix A modeling real world problems get bigger and bigger, even
on the scale of n = 1,000,000, the number of operations needed to do basic ma-
trix operations AZ, A * B, A + B require either O(nz) or (’)(n?’) operations naively.
This motivates the need for a different matrix representation that can allow these

operations to be performed more quickly [13].

Definition 1.3.7 (Hierarchical Matrix) A hierarchcial matriz or H-matriz is a
representation of a matriz (typically non-dense) of size n such that matriz operations
on a wide class matrices can take place in either O(n) or O(nlogk n) (almost-linear)

time, where k s a tunable approzimation parameter.

Remark 1.3.8 Although O(n) and O(nlog’C n) are not the same asymptotic behav-

ior, since logk n grows very slowly, and the fact that the constant ¢; > ¢y preceeding

17

these two asymptotics could allow for c¢in to take longer than conloghn, and in

practice they are very similar [2]. ¢

Since matrices are very rarely globally low rank, the way that the H-matrix finds
these blocks of low rank is through subdivision of the matrix and it is called cluster
tree construction, trying to find "admissible blocks" or low rank blocks, as this thesis
will call them. This leads to a hierarchical structure of the cluster tree, the ability to
find these low-rank blocks, factorize them, and still overall approximate the original

matrix well, as illustrated by the following two lemmas.

Lemma 1.3.9 (Local Matrix Approximation Error [5]) The elementwise er-
ror for the matriz entries G;; approzimated by the degenerate kernel g in the admis-

sible block t x s (and g in the other blocks) is bounded by
3
‘Gij - Gij’ < §n 3 (124)

Lemma 1.3.10 (Global Approximation Error [5]) The approzimation error
HG - GHF in the Frobenius norm for the matriz G built by the degenerate kernel g

in the admissible blocks t, x s, and g in the inadmaissible blocks is bounded by
|G-GJ, < 3 gk (1.25)
FSgn :

Because of these factorizations, and the structure in which they are constructed,

H-matrices can take a dense matrix and turn it into a data-sparse representation.

1.3.3 Fractional Partial Differential Equations

Definition 1.3.11 (Uniform and Adaptive mesh) A uniform mesh is an exam-
ple of taking a domain [a,b] and dividing it into equal spaced pieces. So for example,
the uniform mesh, consisting of n nodes of a domain [a,b] € R is a + ih, where
h=(b-a)/n, and i =0,---,n—1. An adaptive mesh is one that changes based on the

problem at hand. If there is an area of great change and the uniform mesh doesn’t

18

meet the requirements to accurately capture the change, then we subdivide that area

adaptively so that we can capture the true nature of the solution.

Ultimately the fractional PDE equation that we want to solve is

Diu(zx) = f(x),z € (b,c) (1.26)

where f(z) € L?([b,c]). We now define what the fractional differential operator is.

Definition 1.3.12 (Integral definition) The fractional integral of order o € R* x
iR, for function f(x):

(bzgf)(x):r(la) [(wf(s) ds, x>b (1.27)

_ s)l—a

Definition 1.3.13 (Riesz fractional derivative) The Riesz fractional derivative

of order a € (1,2) for the function f(x):

el _ 1 d2 c o
D) =gy et Jy 1O (1.28)
—_; RL o RL o
- 2C08a7r/2[b Dif(z)+.7 Df f(a:):| (1.29)

Remark 1.3.14 It is easy to see that if o = 2, then we have the normal Laplacian
kernel, and as a 2, the resulting solution gets less smooth, which results in harder

computational problems. &

For generality, we are solving equation (1.26) over one dimension with Dirichlet
boundary conditons, namely u(b) = u(c) = 0. To discretize this fPDE, we are using
the standard Galerkin method, where this is projected onto a finite dimensional

space which is a subset of the Sobolev space H{ ([b,c]).

[Dru@ei@)de= [F@)gie) do (1.30)

Now integrating by parts, and recognizing that this fPDE has homogeneous

19

Dirichlet boundary conditions, we find a weak solution of this equation is

fb [20 dxf | —€IIQU(§)d§] () de = /bcf(w)v(x)dx, YveV (1.31)

, where C,, = cos(am/2)['(2 - a).
Now we discretized the system using whatever discretizatoin schema we need
up, = Zj]\il uj¢j € V. Now we have the coefficient vector of all the uj, which can be

rewritten as a linear system At = f, where

au= [ogras Lo 00 de] i@ as (1.32)
= [i) f (@) da (1.3

It is not hard to verify that this matrix has all nonzero elements, so this naturally
leads to some sort of approximation schema.

To elucidate any confusion, on the uniform mesh {0, = ?, . g, 1}, we obtain the
following A e R¥®:

3.7391 -1.4081 -0.2967 -0.0694 -0.0309 -0.0170 -0.0106 -0.0071
-1.4081 3.7391 -1.4081 -0.2967 -0.0694 -0.0309 -0.0170 -0.0106
-0.2967 -1.4081 3.7391 -1.4081 -0.2967 -0.0694 -0.0309 -0.0170
-0.0694 -0.2967 -1.4081 3.7391 -1.4081 -0.2967 -0.0694 -0.0309
-0.0309 -0.0694 -0.2967 -1.4081 3.7391 -1.4081 -0.2967 -0.0694
-0.0170 -0.0309 -0.0694 -0.2967 -1.4081 3.7391 -1.4081 -0.2967
-0.0106 -0.0170 -0.0309 -0.0694 -0.2967 -1.4081 3.7391 -1.4081

-0.0071 -0.0106 -0.0170 -0.0309 -0.0694 -0.2967 -1.4081 3.7391

20

Chapter 2

Research Question - how to approximate
and precondition the dense matrix in an

efficient way?

In this thesis, we hope to address the issue of numerical solutions of fPDEs as
efficiently as possible. This means we need to address the issue of storage and
computations with the matrix. We aim to improve on the approximation to the
matrix, which is storage efficient but better captures features of the original matrix.

We do this via tensor decomposition.

2.1 What has been done

As humanity seeks to better model the world around us, we see that the traditional
partial differential equations (PDEs) do not accurately suffice on all natural phe-
nomena, but fractional PDEs (fPDEs) have been growing in popularity and research.
Some examples of useful applications of fPDEs include those in the fields of physics,
anomalous diffusion, poroelastic/viscoelastic processes, fluid dynamics, signal pro-
cessing, electromagnetics, and economic/financial models [1]. The known numerical
methods to solve fPDEs all lead to very dense matrices that have no nonzero ele-
ments. This means that O(nQ) elements have to be stored in memory, and to directly
solve this linear system, O(n3) operations have to be used. As problems are getting
larger and larger to mitigate errors, the process of storing and solving these systems
become prohibitively expensive. New techniques must be developed that make these
computational problems feasible.

One way to overcome the fact that the matrices arising from fPDE discretization

are dense is to use the Toeplitz stucture that is achieved from a uniform mesh

discretization over the domain. Toeplitz matrices lend themselves nicely to be solved
using Krylov subspace methods such as Conjugate Gradient and GMRES, which can
lead to fast matrix-vector products |7]. These methods are well-studied and known
to be well preconditioned by circulant matrices, which keep the Toeplitz structure
and add periodicity. Then one can use the fast Fourier Transform (FFTs) to perform
a Toeplitz matrix-vector product in O(nlogn) operations, where n is the size of the
matrix (related to the spacial grid) and O(n) in memory [8]. These methods are
fast to apply and show promising clustering of the spectrum of the preconditioner
applied to the orginal matrix, thus speeding up convergence [6].

However, these methods all are depedent on the Toeplitz structure of the matrix.
In certain cases, this uniform mesh isn’t suitable to deal with singularities that
happen on the boundary, so adaptive meshes have to be used, which breaks the
Toeplitz structure. For example, in Figure 2.1, which is an adaptive mesh used to
solve some fPDEs, it is easy to see that there is a smaller mesh size around the
boundaries, then a wider mesh size around one quarter into the domain, then a
return to a tighter discretization in the middle half [25]. This clearly isn’t Toeplitz
as we are now dealing with an adaptive grid, so the distances between nodes will not
be uniform, so investigations into how to combat or work around these singularities
should take place. One work around might be to use known polynomials that can
combat this singularity, but this requires some knowledge of the solution and where
the singularity is [9]. This begs the question; what methods are available to us to
use less data and solve the problem faster if the mesh is non-uniform or adaptive as
to mitigate the unknown singularities of the problem?

One such way might be to use a hierarchical matrix (H-matrix), briefly intro-
duced in 1.3.2, which has become a great tool of dealing with dense matrices espe-
cially those arising in the discretization of PDEs in a data sparse, not necessarily
actually sparse way [24]. They can take (’)(nQ) amount of storage and represent that
as an approximation using only O(nklogn), where k is a parameter depending on
how good of an appoximation you want. Similarly, they can perform matrix opera-

tions, like the multiplication of two general n x n matrices, which typically is done

22

Adaptive Mesh n =256, « =15

08r
06
04r

02r

D MR R v PECCRERLERERE 00 DRRETEE T i ni

0.4

N6

08T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Domain

Figure 2.1: The mesh discretization for fPDEs needs to be adaptive, which breaks
the Toeplitz structured problem.

in O(ns) time, and perform them in O(nlogk n) time [13]|. This provides a powerful
starting block for numerical methods based on these dense matrices.

While there are many ideas on how to solve these fractional linear system, like
geometric multigrid [25], matrix splitting [10], and block preconditioning [4], many
of these methods rely on Kronecker product representations of the preconditioners.
While there are many different ways to think of these tensor product representations,
one could think of them in dimensions higher than just the two dimensional matrices.

There are quite a few references of using higher order structures, such as tensors,
to help solve these preconditioning problems in a variety of applications from image
debluring to integral equations and PDEs [17,20]. Tensors provide a great structure
to study these problems that naturally live in higher dimension where they are, and
not that data projected on something of a lower dimension. The use of tensor based
numerical methods for these fPDEs have come about in either solving the original
problem [23] or preconditioners for the problem [3,22]. Most of these methods

are based on the Higher Order SVD method, but Bertaccini is based on Tensor

23

Train-GMRES. Tensor-train [21] really shines in a very high number of dimensions
because it is linear in all of those dimensions, but for our problem, a small number
of dimensions is satisfactory, so we will use the HOSVD algorithm.

Because HOSVD works will in a small number of dimensions, it is well studied.
In fact, there are applications to reducing the storage requirement of the densely
populated structure, as we are truncating after the most significant contributions
in each dimension. There are also many nice properties that are observed in both
the tensor and matrix setting. For example, using a Kronecker product framework
of turning a matrix into a tensor and decomposing the tensor using HOSVD, then
converting back into a block matrix has the same Frobenius error as performing a
decomposition on the original matrix [18]. This also has the advantage of dealing
with the higher dimensional data in its more natrual environment. While this method
does a great job of turning dense matrices into approximations using the HOSVD, the
method is limited by only dealing with block low rank matrices. However, what if the
matrices have a slightly modified structure, of not block low rank, but hierachically
low rank (or data-sparse representations)?

The scope of this thesis is to answer exactly that. These fPDEs are dense ma-
trices, and using the Toeplitz structure doesn’t account for the singularies that may
arise even with smooth initial data. Therefore, the well studied solutions and precon-
ditioners of Toeplitz matrices cannot be used. There is hierarchical structure that
can and should be exploited. This thesis develops a novel tensor based technique
that both approximate the matrix better using less stroage than known methods
and preconditioner the matrix so that the solutions can be found much faster. The
method can approximate the original stiffness matrix in a much more sparse rep-
resentation using these hierarchial off-diagonal blocks of low rank, which uses less
data and closer approximates the dense matrix. This method also is found to be an

effective preconditioner for how small it is in the number of elements in storage.

24

2.2 Leverage the approximation

The methodology for turning matrices into tensors when they are all the same di-
mension m xn, is documented in [18] to uncover possible additional latent structure,
such as block low rank structure. For convenience, the algorithm is presented below

[Algorithm 3.

Algorithm 3 Turning BLR matrices into Tensors

Require: A
Partition A into block matrices A;; € R"*"
Encode the position of A;; by E;; “placement matrix"
for All nonredundant off-block diagonal submatrices do
Twist A;; into A lateral slices of the tensor
Perform tr-HOSVD on A to get A
Squeeze the lateral sliced of 4 into matrices placed in the (4, j) position by E;;
end for
return A

This generic framework works really well if the structure is based on block low
rank as the Kronecker structure that we are encoding by E;; causes us to inherit
some structure from the original matrix to our approximation causing some savings.
However, our problem has hierarchical structure so we want to find a way to perform
this same principle on multiple tensors of varying block sizes.

Two main classes of structured matrices were considered in [18] — block Toeplitz
(with possible Toeplitz blocks) and block low-rank. For specificity, please consult
their paper, as we are trying to generalize their results.

Starting with the Block Toeplitz case, if T ~ T¢[A], both the CP and Tucker

decompositions can be shown to correspond to

-
A:Mg[g'] = ZC] ®Dj

j=1
where 7 = r is the rank of the CP approx, or 7 = ry is the mode-2 truncation index.
As was previously noted, the entry-wise structure of C; comes from the block-wise
structure of the original matrix. Similarly, if we have D; with low rank (small r for

CP, and small 7, r3 for Tucker), then serious storage savings can occur. A diagram

25

~2_ e 1"
D

J

J

Figure 2.2: When a matrix has block structure, it can be approximated a sum of

Kronecker products.

Q

Figure 2.3: When a matrix has block structure, it can be approximated by orthogonal
matrices, left and right multiplied by, a block-rank structured matrix.
of what this can look like is seen in Figure 2.2.

This paper also extrapolates this finding to a more broad class of matrices— those
with no block structure other than low rank blocks. Regardless of the tensor method
used (see [19] for more details about tensors decompositions than those presented
here), like rank r in CP and rank (r1,72,73) in Tucker, the approximate tensor I

when mapped back to a matrix has the following structure:

Me[T] = (I, ® U)structs (Gi)!_, (I, @ WT). (2.1)

where Gyg is 71 x 79, U, W can be found with 71, 79 orthonormal columns and
1= =7 (CP) or 71 = 71,72 =13 (Tucker).

The struct function here is the sum of placement matrices Kronecker product-ed
with the sub-blocks of the original matrix. This allows for the product of (the sum
of) Kronecker products which have the structure mentioned in the introduction.

However, there is a common similarity between the BLR structure and the

hiarchical structure, which is the low rank off diagonal blocks. This is going to

26

- T

m/4 X 12 X n/4

n

Figure 2.4: A way to approximate our matrix of interest would be to ignore the
strong diagonal blocks, and map the other off-diagonal (hopefully low-rank) blocks
into a tensor to be decomposed.

make the idea easily extendible to our problem where we keep the most important
parts and find a way to approxmate the rest. With the block low rank framework,
it is easy to fix a size of submatrices, divide the matrix into these subblocks, and
twist these into a tensor. Because of the inclusion of all the blocks, or all of the
blocks off the main diagonal (strict upper triangular if you are using symmetrical
arguments), one knows that there will be room for compression, since the full block
diagonal blocks are excluded.

Naively, we have
A ~blockdiag(A) + Y E; ® A, (2.2)

where the A; are the approximations of A; resulting from the tensor decompo-
sition, and E; are the weighted placement matrices so that the blocks consisting of
all of the similar subblocks are accounted for and, placing them where they should
be so that ||E2”2F =1,Vi.

However, this process of finding these low rank features is opaque for the hier-
archical matrix. To access these low-rank off diagonal blocks, a recursive splitting
was performed. The first concept is having both a geometric and algebraic stopping
criteria, where if the block gets below a certain threshold, and it is still not low
rank, it most likely never will be, so the entire block is stored, which means there
is very little compression that can happen. To combat this, the other criteria is an

algebraic rank of the subblocks, meaning at each step the subblock rank is checked

27

and if it falls below a user-defined threshold, then it is considered low rank. The
entire matrix A is initally considered, and the questions of is it geometrically small
or have small algebraic rank are asked. If the answer is “no", then the matrix is
subdivided into four block matrices- A11, A12, Aoy, and Ags. Then the process is
repeated until one or both of the conditions are satisfied. This process teases out

the blocks that become considered low rank, and is visualized in Figure 2.5.

2.3 Leverage the Structure

With the loss of Toeplitz structure, a preconditioner for this type of problem is not as
well studied. However, based on the hierarchical structure of the matrix, we see that
the most important parts of the matrix are contained in the main diagonal blocks.
As you get farther away from the central diagonal, the rank in the off diagonal
blocks gets smaller and smaller so we can get larger blocks that have a fixed rank.
This is reminiscent of a block Jacobi preconditioner 1.3.5. However, as opposed to
completely ignoring the off diagonal blocks, and since we have already computed an
approximation, we are going to use the approximation as the preconditioner to get

very well conditioned systems even as n gets large and o 7 2.

28

Figure 2.5: (1.) The whole matrix A, (2.) Subdivision of whole matrix A into
four subblocks Aq1, A12, A1, and Agg, (3.) Subdivision of A.11 into four subblocks
Adly1,All19,A 119y, and A.1l99, (4.) Subdivision of A.11.11 into four subblocks
A11.1137, A11.1145, A.11.115;, and A.11.115s, (5.) The block A.11.11.11 failing the
geometric stopping criterion, stored as full, (6.) All the blocks in A.11.11 failing
the geometric stopping criteria, stored as full, (7.) Subdivision of A.11.12 into four
subblocks A.11.1211, A.11.1219, A.11.129;, and A.11.1299, (8) The block A.11.12.11
satisfying the algebraic rank stopping criterion, twisted into a tensor for later com-
pression, (9) All the blocks in A.11.12 stored according to their structure, (10) Due
to symmetry and strong diagonal dominance, all the blocks in A.11 stored accord-
ing to their structure, A.12 subdivided into four subblocks, (11) The block A.12.11
satisifying the algebraic rank stopping condition, twisted into a different tensor for
later compression, (12) Repeating this process recursively unto all entries of A have
been stored.

29

Chapter 3
Research and Experimental Design

3.1 Overview

This entire experiemental design process can be summarized by dividing the matrix
up into two categories— those subblocks that are advantagous to compress and those
that are not— turning those low-rank matrices into tensors at different levels depend-
ing on the size of the low rank subblocks, performing a tensor compression based on
the HOSVD decomposition, and then mapping these approximated tensors back to

a matrix.

3.2 Hierarchical Matrix Algorithm for 2Z-sized matrices

First, we need to solve the fPDE over the unit square on an adaptive mesh. Once
the code is run for that, two matrices are output (for each iteration of the mesh),
which are A_full and A, which are the full dense matrix storage and the hierarchical
representation of the full matrix, respectively. This hiearchical matrix representaion
is based on Taylor expanding the kernel of the fPDE. The adaptive code is set up to
subdivide the matrix in half both by rows and columns and then check the stopping
conditions. We will access the code’s recursive nature to partion the dense matrix
into tensors.

Because of the hierarchical structure, there is no guarentee that these submatrices
are going to be the same size, so we have included a part to check how many levels
one has gone to get a low rank subblock, which is related to the size of the subblock
as everything is partitioned into 4 at each step. Keeping track of these levels, we are
able to keep subblocks of the same size together into the same tensor. While most
of the matrices we are working with only require the construction of tensors at two

different sizes, that is not a requirement, and we hope to build a method that can

accommodate as many levels of these subblocks tensors as the code requires.

Algorithm 4 Turning H-matrices into Tensors

Require: A, a hierarchically structured approximation matrix, A_full, the full ma-
trix
> These come from running the compare_adaptive code
if flag == 0 then
Repeat on A 11
Repeat on A 12
Repeat on A 21
Repeat on A 22
else if flag == 1 then > These have low-rank structure
See how many levels we have gone down, denoted by super script ¢
Twist A_fullf[row_start : row_start + n_row - 1, col start : col start +

n_col - 1]

else if flag = -1 then > These do not have low-rank structure
Store the entire block

end if

return A_full?, v/

This algorithm works really well if we have a matrix of size 2¥ x 2 as when the
matrix or submatrix that we are looking at doesn’t have low rank, so to solve that
we take the submatrix we are looking at and divide it in half rows and columns, so it
is still of the form 2571 x 2171 50 we can keeping doing this procedure until the stop
criteria are met. These criteria are both geometric (the size of the submatrix) as well
as algebraic (the rank of the submatrices). In fact, this leads to our first toy problem
of the thesis. Under the correct parameters in the original code (6 = 0.613,rk =
20, = 1.5), we get a matrix that is in R?%*256 To visualize the magnitudes of the
entries, Figure 3.1, where the yellow diagonal has entries on the order of magnitude
of 102, and the blue off diagonal entries have order of magnitude of 107",

When we apply the algorithm 4, we are able to find the indices and flags for
different off-diagonal blocks for the actual matrix A_full (not the H-matrix approx-
imation) as seen in Figure 3.3. To be more explicit, in this toy example one can count
that there are 30 "full" blocks (denoted by the darkest blue, along the main block

R32><32

tri-diagonal) that are all , which is due to the geometric stopping condition,

10 "level 3" low-rank blocks (denoted by the medium color blue, between the main

31

50

100

150

200

250

50 100 150 200

R256><256

Figure 3.1: For a = 1.5, the resulting matrix in visualized in terms of the

relative magnitude of the entries.
M,

Figure 3.2: The original dense matrix can be split into disjoint parts— the block
diagonal parts (darkest blue), the subblocks that turn low-rank after three levels
(medium blue), and the subblocks that turn low-rank after two levels (lightest blue)

tridiagonal and outer blocks) that are all R332 rank = 20, which is due to the al-
gebraic stopping condition, and 6 "level 2" low-rank blocks (denoted by the lightest
color blue, all the way off the diagonal) that are all R4 rank = 20 (summarized
in Table 3.1).

Once we have all the indices and flags for the different levels at which the sub-
blocks become low rank, we can consider this a "matrix splitting” problem as demon-
strated in Figure 3.2. We have what we will denote as "blockdiag(A)" which is the
first term in the RHS (darkest blue) plus the terms consisting of the subblocks that
turn low rank at the different levels. The white blocks indicate the subblocks that
are all zero, as they have already been accounted for at another term.

However, after twisting each of the block matrices within the same category and

concatenating them, we have three third order tensors. Starting with the "full"

32

’ Category ‘ Color Number of blocks ‘ Size ‘ Location
Full Dark blue 30 R32%32 [Main diagonal to tri-diagonal
Level 3 | Medium blue 10 R332 | Between main and off-diagonal
Level 2 Light blue 6 RO4*64 Off diagonal corners

Table 3.1: Using our toy problem, three categories are found

Level | Color

YA AT

Figure 3.3: This is the levels diagram for the adaptive mesh of size 28 x 2%, Each
small block is 32 x 32 and the bigger blocks on the off diagonals are 64 x 64. Once
these blocks are found, they are twisted into a tensor at each level.

matrix blocks, we could get a "full" tensor € R32*39*32 Nevertheless, this is frivilous
to do as we assert that there is no compression possible for the "full" tensor. We
also get the medium blue "level 3" matrix blocks which get mapped into a tensor,
lev3 e R32%10%32 4114 the light blue "level 2" matrix blocks which get mapped into a

tensor, lev2 e R64x6x64

3.3 Alternative Algorithms for Matrices not of 2~.

The one problem with adaptive meshes is that they are not going to be of the
size 20, which means that the first algorithm that we were investigating will not
work on all (in fact most) of the discretized meshes. This means that we have to
find a way to overcome this challenge. If we started with a 2 matrix, then every
subsequent halving would also have that same structure, and we didn’t have to worry
about having non-square block matrices. Now let’s consider if n = 129, where we do
not have to go past the first splitting where we would get block matrices that are

A11 € R64X64,A12 S R64X65,A21 € R65X64, and A22 € R65X65. HOWQVQI’, one thing is

33

nice is we know how the partition is performed in general. The left-to-right partition
of an n x n matrix will always partition the matrix so the left child contains indices
(:,1:|5]), which is all the rows and the first |5 | columns, and the right child will
contain the indices (:,[§]+1: end). The top-to-bottom partition works the same
way where the top child will inherit the first [] rows, and the bottom child will
inherit the last n — ([% + 1) rows. Comparing these two partitions we know that
these numbers are going to differ at most by 1, since any number is either even or
one away from being even. If we can use this, then we can easily find an algorithm

that can work for any adaptive mesh that we desire.

3.3.1 Padding

Naturally, one way we can handle this problem is pad the smaller number by a row
(column) of all zeros so that the number of rows and columns are the same size,

which we will call “padded". This is presented below in Algorithm 5.

Algorithm 5 Turning #-matrices into Padded Tensors

Require: A, a hierarchically structured approximation matrix, A_full, the full ma-
trix
> These come from running the compare_adaptive code
if flag == 0 then
Repeat on A 11
Repeat on A 12
Repeat on A 21
Repeat on A 22
else if flag == 1 then > These have low-rank structure
See how many levels, £ we have gone down
maxi < max(n_row,n_ col)
A_pad <« zeros(maxi)
A_pad’[l:n_row,1:n_col] <« A_fullfrowstart : row_start + n_row - 1,
col start : col start + n_col - 1]
Twist A_pad’ into a tensor

else if flag = -1 then D> These do not have low-rank structure
Store the entire block
end if

return A_pad’, v/

To make this more concrete, if we run the code for a slightly different refinement

ratio, 8 = 0.614 now, we end up with an adaptive mesh discretization leading to a

34

stiffness matrix of n = 257. Since the parameter didn’t change that much, we have
the same number of blocks that turn low-rank at all levels, but the dimension of
those blocks are different, causing the tensors to be different dimensions as well.
Following the know partition pattern for this problem, in the padded case, we would

get full_ten € R33x3330 10y2 ¢ R65%65%6 and 1evs e R33x33x10,

3.3.2 Truncating

An equally valid way of dealing with the problem of matrices not of n = 2 is simply
truncate the greater number between the rows and columns so that they equal the
lesser number. This would then mean we would have to remove either the last row
or column of the subblock so that it fits with all of the other subblocks in a tensor.
After all, we are going be using HOSVD to get a truncation rank that is smaller than
the original problem, so it should not matter that much. This algorithm is presented

in Algorithm 6.

Algorithm 6 Turning #-matrices into Truncated Tensors

Require: A, a hierarchically structured approximation matrix, A_full, the full ma-
trix
> These come from running the compare_adaptive code
if flag == 0 then
Repeat on A 11
Repeat on A 12
Repeat on A 21
Repeat on A 22
else if flag == 1 then > These have low-rank structure
See how many levels? we have gone down
mini < min(nrow,ncol)
Twist A_full’[rowstart : rowstart + mini - 1, colstart : colstart + mini - 1]

else if flag == -1 then > These do not have low-rank structure
Store the entire block
end if

return A_full?, v¢.

Using the same example matrix as above for n = 257, the truncated algorithm
we would get full_ten € R3232%30 1y2 ¢ R6646 4nd 1ev3 e R3232X10 Of course
this matches the dimensions of n = 256 because we are chopping off the one row and

column that causes it to be nonsquare.

35

Once these matrices are turned into tensors by whichever way is necessary, then
they can be truncated by the tr-HOSVD algorithm. These tensor approximations will
have the same dimensions as the orginal tensors, so in the case of our toy problem, the
R64x64x6

arguments for the mapping algorithm are 1ev2, a level 2 tensor of dimension

and 1ev3, a level 3 tensor of dimension R32*32*19 The outputs are Tev2, Tev3, which

R64><64><6 R32x32x10

have dimension and , respectively®.

This fact was instrumental in mapping these approximation tensors to the orig-
inal location in the matrix. We are able to record either the indices or the Kro-
necker structured matrix that places these slices back where they should. So running
through the size of the frontal slices on all levels of tensors we are able to squeeze
those slices back into matrix subblocks, placing them by the information that we
saved from the original tensorization, which is presented in Algorithm 7. Since the
tensor and tensor approximations have the same dimensions, we are able to uniquely
place the correct number of blocks (frontal slices) with the same dimension (di-

mension of those frontal slices) back where we retrieved them from, resulting in a

tensor-based low rank approximation of the original matrix.

Algorithm 7 Turning Tensors into H-matrices

Require: T the approximated tensors , idz?, keeping track of Kronecker structure

for those tensors V£
for every ¢ do

for j < 1:size(T) do

thlrappx(ida; (1), idxz;(2)) < T, 5)

end for
end for
return tblrappx, a tensor-based low rank approximation

But what does this tensor-based low rank approximation look like? As stated,
because the blocks around the main tridiagonal are full, we don’t try to compress
those, so these subblocks will be the same as the original. We do compression only
on those off-diagonal subblocks that are found to be low-rank. For our problem, we

only have constructed (and approximated) two tensors, T, 72, and then these will

*A keen observer might have noticed that before we twisted subblocks of the matrix into lateral
slices, whereas here we are concatenating them as frontal slices. This is just an artifact of the code
and nothing to worry about as these tensors we constructed are unique up to permutation.

36

get matricized into A1, A2 so we can write A ~ A.

A ~blockdiag(A) + AT + A2 (3.1)
~blockdiag(A)+ Y. E;@Al+ Y E;eA? (3.2)
size(ZAl,S) sizegA2,3)

where the E; are the respective Kronecker "placement" matrices and since Al €
R332 the E; € R¥®, so that we are summing matrices that are all 256 x 256.
Similarly, the E; € R** are the Kronecker matrices for the A2 ¢ R64%64 Lastly, the
phrase "blockdiag" here is a little ambigous. Certainly the main diagonal blocks are
included in this function, but depending on the parameters of the fPDE, not much
else can be known. It could be as thin as block tridiagonal, or as thick as block
pentadiagonal. But the amount of blocks are not constant throughout the problem.
In an abuse of notation "blockdiag" is used to mean the blocks on and surrounding
the main block diagonal that is found to be full rank.

These placement matrices might be a little ambiguous, so to elucidate this con-
cept, we will look at where a specific placement matrix will place the block of inter-
est. First, let’s consider E! € R®® with only one nonzero element. First it makes
sense that it is 8 x 8 because when you Kronecker product it with a block matrix
Ag3 € R32x 32, we end up adding a (8)32 x (8)32 matrix to the original 256 x 256

matrix, so matrix addition is well defined. If we wanted to place the A g 3) matrix

37

Figure 3.4: The A (g 3) submatrix is placed in the correct location by E%G,:’))’ and all
white blocks are zero.

block, the placement matrix is:

E(g3) =

o o o o O

o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o

This block placement is represented pictorially in Figure ??, where the medium blue
block is placed in the (6,3) position, and all the white blocks are the zero block
matrix.

Similarly, we can perform this operation on the largest light blue matrix block,

2

A€ R64x64 1y the placement matrix E(1’3)7 represented pictorially in Figure 77.

Ef;3) =

o o o O
o
@)

o o o O

38

Figure 3.5: The A(y 3) submatrix is placed in the correct location by E%l,?))’ and all
white blocks are zero.

+

Figure 3.6: The original dense matrix is approximated by the sum of the exact full

blocks, the approximation of the low rank blocks at level 3, and the approximation
of the low rank blocks at level 2.

These sums of Kronecker products might not be clear so using Figure 3.6, one
can see that the matrix can be rewritten as an approximation. The original matrix
that we want to approximate is on the left hand side of the equation. The left hand
side now consists of the sum of three matrices— the first is the full blocks and are
the same dark blue color as the original since they are never compressed, the second
is the approximation of the low rank blocks at level 3 (originally they were medium
blue, but since they now are approximated they are medium red), and the last is the
approximation of the low rank blocks at level 2, colored light red to indicate that
these are an approximation to the original light blue blocks.

This means that even though we have a matrix with hierarchical structure, we
are able to still construct the approximation as the block diagonal "full rank" blocks
plus the sum of Kronecker products of the first collection of low rank blocks plus the

sum of Kronecker products of the second collection of low rank blocks.

39

Chapter 4
Research Results

4.1 Storage

To quantify the results of this proposed method, it is best to compare the three
options’ storage and compression requirements as well as the relative error between
the approximation to prove novelty. These three methods are: naively storing the
entire dense matrix, approximating the hierarchical structure by Taylor expanding
the differential kernel, and approximating the matrix using the methods developed
in this thesis.

The metrics that will be used are called compression ratio, and data saving

percent, where

Uncompressed Size

Compression Ratio :=
P Compressed Size

Compressed Size

Data Saving percentage :=1 — ,
&P & Uncompressed Size

where uncompressed size is the starting amount of elements to store, and compressed

size is the amount of stored elements in the not-to-lossy approximation.

4.1.1 Naive

First, to naively store every element in an n x n dense matrix, like the one achieved
by discretizing the fPDE would result in n? elements. In our relatively small case of
n = 256, that is already storage of 65,536 elements. It is conceivable that the adaptive
mesh for a larger problem has at least 1,000 gridpoints, which results in 1,000,000
elements. Since we are storing all of the elements, that is the compressed size is the
uncompressed size, the compression ratio is 1:1, and the data saving percentage is

0%. This is not ideal.

4.1.2 Low Rank Matrices

Another way would be to differentiate which subblocks of the matrices are considered
low rank, and which are not. This process has been discussed before by recursive
subdivision and can be pictorally seen in Figure 2.5. This method designates the
blocks around the main diagonal as full rank, so that means they need to be stored
in full. Next to these are the blocks that are “barely" low rank, and there is a low
rank factorization, and lastly the farthest block from the main diagonal are low rank
blocks and benefit the most from storing them in a factorization. A detailed analysis

of storage for the test problem («a =1.5,0 =0.613,n = 256,k = 20) is done below in

table 4.1.
’ Category ‘ Number of blocks ‘ Size of blocks ‘ Total ‘
Full 30 (32 x 32) 30720
Level 3 10 2 x (32x20) | 12800
Level 2 6 2 x (64 x20) | 15360
58880

Table 4.1: Storage accounting for toy problem (0 = 0.613,« = 1.5) using method
in [25].

The 2 outside of the parentheses in the "size of blocks" column of table 4.1 comes
from the fact that when there is a factorization of C € R™"™ which has rank r such
that C = AB” and A ¢ R™", BT ¢ R™", which is why we need to store two matrices
of those size. This demonstrates that this method requires 58880 elements of storage
and if every element was stored, 65,536 would be needed, which means this method
gives a compression ratio of 1.112:1 and data saving percentage of 10.16%.

It is also advantagous to note that the rank condition of r = 20 is a parameter that
can be changed, so if we set a different rank stopping criterion, then the compression
ratio would change. It is interesting to note however, that the size and structure
of the problem do not change, just the rank of the factorization C = AB”. For
example, if we set the rank condition to be r, we still have 30 full sized blocks, ten
level 3 blocks, and six level 2 blocks. And because the problem is still n = 256, that
doesn’t change either, just the size of the factorization. Generalizing the results for

this method in a generic rank, we get table 4.2. Doing the math, we are able to get a

41

data saving percentage of approximately 0.53125 — 0.02148r%, where the 0.53125%
comes strictly from the storage of all full blocks along the main diagonal. More

detailed analyses for lowering storage for the main blocks are performed in Section

4.1.4.
‘ Category | Number of blocks ‘ Size of blocks ‘ Total ‘
Full 30 (32x32) 30720
Level 3 10 2x(32xr) 640r
Level 2 6 2x (64 x1r) 7687
30720 + 1408r

Table 4.2: Generalization of storage accounting for toy problem, using hierarchical
low rank blocks

4.1.3 Tensor-based Methods

Another way that the we can find an approximation of the dense matrix is using
the tensor based approach that we have discussed in detail in chapter 3. For the
n = 256 toy problem, we will analyze the storage requirements for the standard H-
matrix to tensor algorithm (4). The main analysis transfers nicely over to the other
adaptations of algorithm (namely algorithms 5,6).

First, just like the method mentioned above, we do not want to try to compress
the blocks that are deemed full rank and incompressible, so we will leave them at
bay. Through the 2¥ sized matrix method presented (Algorithm 4), we already
have constructed tensors of all the blocks that turn "low-rank" in the same size
step and that approximation can be written as a sum of Kronecker products (Eqn.
3.2). Since we are dealing with an inital problem that is exactly n = 2%, we leave
discussion of the edge cases for later. Since we are trying to approximate the same
hierarchical matrix of our toy problem in a different way, it is no suprise that there
are 30 blocks along the main tridiagonal that are considered full rank, 10 blocks that
are considered low rank in level 3, and six blocks that are considered low rank in
level 2 (darkest blue, medium blue, and light blue in Figure 3.3, respectively). For
the tr-HOSVD algorithm, we have to store not only the truncated core tensor but

also the factor matrices to be able to recreated the approximation. To mirror table

4.1, an accounting of the storage used for this new method is presented in table 4.3.

’ Category ‘ Subcategory ‘ Size of blocks ‘ Total ‘

Full 30 (32 x32) 30720
Level 2 lev2 core 47 x 47 x 4 8836
lev2 Factor matrix 64 x 47 3008

lev2 Factor matrix 64 x 47 3008

lev2 Factor matrix 6x4 24
Level 3 lev3 core 32x32x10 | 10240
lev3 Factor matrix 32 x 32 1024

lev3 Factor matrix 32 x 32 1024

lev3 Factor matrix 10 x 10 100
57984

Table 4.3: Storage Accounting for toy problem (6 = 0.613,« = 1.5) using hmat2ten
with truncation ranks lev2 € RA7474 1gy3 ¢ R32x32x10

The storage accounting for a general problem with only two different sized tensors
with truncation ranks for 1lev2 of 71, 79,73 and truncation ranks for lev3 of ki, ko, k3

is performed in table 4.4.

’ Category ‘ Subcategory ‘ Size of blocks ‘ Total
Full 30 (32x32) 30720
Level 2 lev2 core 1 X 79 XT3 T1T2T3
lev2 Factor matrix 64 x rq 64rq
lev2 Factor matrix 6 x 1y 679
lev2 Factor matrix 64 x 13 6473
Level 3 lev3 core ki x ko x k3 kikoks
lev2 Factor matrix 32 x Kk 32k1
lev2 Factor matrix 10 x ko 10ko
lev2 Factor matrix 32 x 13 32ks

Table 4.4: Generalizeation of Storage accounting for toy problem, using tensor based
methods on low rank blocks

There are two more proposed tensor methods whose storage should be considered
— trucation and padding. For a concrete example, consider a total matrix of size
n = 257. This example is so close to n = 256, so that most of the previous analysis
is still valid, i.e. two levels of tensors are constructed. The following is how the
two methods would store the information: For the trunction method, after the first
subdivision we have Ay € RI128128 A) e RI29I28 A, e RIZ8¥129 AL, ¢ RI29*129,

however it is easy to see that these methods are going to lead to different sized blocks

43

being put in the same tensor, which is impossible.

4.1.4 Additional Storage Considerations

While storage of the individual elements is important, there are additional storage
features especially for placement of these blocks that need to be considered. Storing
the elements needed for subblocks is important, but if we place these elements in the
wrong location, catastrophic consequences can (and will) happen. For the hierarchi-
cal matrix representation, the information is stored in a recursive cell array. But if
it wasn’t, the information can be summarized with two bits of information. At each
level, after the subdivision into four smaller blocks, the information about which side
of the horizontal division and which side of the vertical division the new subblock
is in. This means all the entries in A2 need to be stored as well as {0,1} which
says that these elements are in the top half and the right half of the matrix. This
means at each level of recursion, we have to store 2 bits. For example A.11.12.21
has 6 bits of information {0,0,0,1,1,0} to dictate that it located in the lower left
quadrant of the upper right quadrant of the upper left quadrant. The tensor based
method also has to allocate bits to placement of the blocks in the form of placement
matrices that are Kronecker producted to the necessary block entries. Using the

same example above, the entries in A1 could be placed by the following schema

0 1
® Aqg (43)

0 0

1
(0 1) ® ® Aip (4.4)
0
We see that this requires 4 pieces of information to place the entries where they
need to go. However, this has introduced a new form of structure into our prob-

lem, that will be utilized later. For the example of placing A.11.12.21 could look

44

something like

(0 010000 0)® ® Ai1.12.21 (4.5)

((1 0)®(0 01 0))® 1 ® 1 ®Ar1221 (4.6)

(o s A | S

This example shows that using Kronecker product structure nested inside of Kro-
necker structure has ways of reducing the number of entries needed to properly place
the subblocks. As opposed to the hierarchical way, this needs 12 pieces of information
to place it, but the structure can be exploited.

There are also symmetry advantages that were not taken advantage of, but would
greatly save storage. First, the adaptive mesh discretization still has symmetric
positive definite structure. In fact this can be visualized in Figures 3.1 and 3.3. This
means that for the hierarchical formulation, we have stored both A_12.A_12 and
A_21.A_21, even though they both represent the same 64 x 64 subblock and are just
transposes of each other. Other extensions of this fact are that rank C = rank C” and
if C = AB” then surely CT' = BAT, so any properties we would like can be found
by only considering one of these blocks. For the toy problem considering symmetry,

instead of just storing 30 full rank blocks, 10 level 3 blocks, and 6 level 2 blocks, only

45

19, 5, and 3 blocks would have to be stored to get the same result. This advantage
also applies to the tensor based methods that we proposed, as we would only have
to put half of the total blocks into our tensors to compress them.

Considering the symmetry of the low-rank off diagonal blocks does help lower
storage costs, but the largest proportion of storage is still coming from storing the
entire blocks along the block diagonal of the matrix. This storage of the full blocks
along the block diagonal occurs in both [25] and this new proposed method. To
combat this, we utilize the SPD structure of our problem. Since the entire matrix
is SPD, we can easily apply the definition to see that any pricipal submatrix is
also SPD. This means that the full blocks and principal submatrices along the main
diagonal have a Cholesky factorization, A1 = L{lLH, which cuts the storage of these
blocks in half as we only have to store the L matrix, which is an lower triangular
matrix. Since both methods treat the main diagonal blocks the same way, only one
analysis is needed. We see that we can view the full rank diagonals matrices into
larger submatrices that are now still symmetric and positive definite. There are a few
that cannot be encorporated into a larger block matrix, so we will just store them as
a whole. Then we have block matrices along the diagonal that are all SPD, so that
means there is a Cholesky factorization for those. If the size of the submatrix is n,

that means the lower triangular Cholesky only requires "(nTH)

elements of storage.
To be explicit, let’s use our toy matrix as an example of how these considerations
can save storage in Figure 4.1. We have the four 32 x 32 matrices now thought of
as a SPD 64 x 64, which means that we only have to store L; using 2080 elements
of storage, Similarly, we have 9 32 x 32 that can be thought of as a 96 x 96 SPD
principal submatrix, and only have to store Lo, L3 using 4656 elemetns of storage
each. Lastly, there was no way to incorporate some of the blocks, so we can store
those 4 blocks in their entirety so that requires 32 x 32 = 1024 elements of storage

each. Lastly, the white squares in the matrix are there to denote that because of

symmetry arguments, they do not need to be stored.

46

Adaptive Mesh
M(R, 256,256)
a=15

Figure 4.1: Using that our toy problem matrix is SPD, we can reformulate the
matrix to include nonoverlapping blocks along the main diagonal, which are SPD,
so to save storage, we can perform a Cholesky factorization and store one of the
Cholesky factors. This cuts our storage in half.

4.2 Approximation

While storage considerations are an important way to compare methods, another
comparison consideration is to see how the various methods’ approximation to the
original problem compare. Using the same information that is presented in table
4.1, 4.3, we compare how the hierarchical low rank approximation compares to the
full matrix arising from the discretization, as well as how the tensor based low rank

approximation compares as well from the relative Frobenius norm in table 4.5.

] Method | Literature [25] | Proposed |
Data Saving (%) 10.16% 11.52%
Rel Error 8.9805x 107 | 5.2210x 107°

Table 4.5: Comparing relative errors between the proposed tensor based methods
and literature using a similar compression benchmark.

In summary for the toy problem, we do not see the same level of approximation
using consistant compression benchmarking. However, we are being unfair to our
method in this comparison as all simulations were run using the rank of the subblocks

to be rk = 20. This naturally will cause the relative error to be very low since this

47

means we are storing all 32 x 32 blocks that become low rank after three levels of
recursion to be C = AB”, where A, B € R32*29. This means for the blocks that we are
approximating, isn’t really an approximating. Additional testing of how the ratio of
rank and size of the subblocks will be performed to find a way to level the playing field
between the two methods in our comparison. Our method allows for varying levels
of compression and is much more flexible in terms of storage than the rigidity that
the method in [25] provided as there is no way to change storage requirements, other
than changing the rk, but this can lead to problems with convergence between the
hierarchical matrix approximation and the true stiffness matrix as well as unstable
meshes as n increases for larger problems; both are problems with the code to solve
the fPDE, and further discussion is outside of the scope of this thesis. Also, this
n = 256 matrix, which has been extensively studied in this thesis may just be too
small to notice the large amount of potential savings that are possible. It would be
interesting to see how these methods work for larger sized problems.

As was stated, these two alternative formuations should be the same as the first
formulation for a matrix 2%.

Lastly, it should be noted that this method that was developed does not cost us

anything in the approximation of the original matrix in the Frobenius norm.

Lemma 4.2.1 (S., 2023) Let A be a matriz that can be expressed as
A = blockdiag(A) + Y E @ Al + Y E; @ A? (4.8)
k k
= blockdiag(A) + > (Z E; ® Aﬁ) (4.9)
4 k
and let A be an approzimation to A |, where

A = blockdiag(A) + > (Z E! ® K’f) (4.10)
0 k

such that the A are the sum of Kronecker products that come from the matriz-to-

tensor mapping of the A as the blocks, compressing, and then a tensor-to-matriz

mapping.

48

Then
|A-R[2 = 3 X’ - 73 (4.11)
V4

Remark 4.2.2 To give some intuition for the coming proof, consider the pictorial
reprentations of the exact matrix splitting and the approximation of the matrix
splitting (Figures 3.2,3.6, repsectively). If we notice that the blockdiag(A) are un-
changed, then first two terms will cancel exactly. Then for the next two terms, since
the subblocks are all disjoint restrictions of the index set, we can consider then that
the difference between HAé —:&\ZHF, V¢ are just the tensor-to-matrix mapping, and
since this is bijective, we have |Tz[A*] - %[KZ]HF = | Tz [A*] —ﬁ[Aé]HF, which is
just the Frobenius norm difference between the tensorized original and the tensor
approximation. Therefore, it follows that the square of the absolute error of the
matrix approximation is the sum of the squares of the absolute error of the tensor

approximation. <

Proof: Using the powerful framework that was presented in [18], we can generalize
their proof for 1.2.8. It is important to note that we can ignore the block diagonal
term since if we were to map those blocks to a tensor, there is no truncation, and
the bijective mapping would place those exact blocks in the exact same place. In
short, Mg[Tg[blockdiag(A)]] = blockdiag(A). For the low rank tensors, let’s have
pe lateral slices in x* , for all £ levels of tensors, resulting from the matrix-to-tensor
mapping. Also, it is important to note that Ejg are all of the placement matrices,
with only one non-zero element, as we are assuming no block structure. Then we

have

|A-&[= A - Me[T1]% (4.12)

2
(4.13)
F

Pe Pe
Z (Eﬁ ® Sq(xzk) - Z Eé ® Sq(j,gk))
£ \k=1 k=1

-5 5 B e (sa() - sa(vi) 1.1)

49

Pe

=2 2 B o - 7% (4.15)
De

¢ k=1 O

4.3 Speed of Mat-vec

While a detailed analysis of speed is beyond the scope of this thesis, a few advantages
of this Kronecker-based methodology are presented. Recall Eq 1.3, which says that
(A ®B)i =vec(BXAT). Assume A € R”" B € R™™ then to do the matvec on
the RHS, would take O(m2n+n2m); however, if you naively performed the LHS
on A ® B e R™™and is we assume that they are dense, this matvec would be

O((mn)?), which is much slower, especially for larger matrices.

4.4 Preconditioning

As was mentioned earlier, another goal of this tensor based approximation is to not
only require less storage but to be a good candidate for preconditioning. The main
idea here is as the fPDE has more nodes in the mesh, or as a # 2, the full matrix
gets more ill-conditioned, so we are trying to develop a method that combats that so
the system can converge to the solution faster. The effect of the size of the problem,
n, and the fractional index, a on the condition number of the resulting full matrix
is visualized in Figure 4.2.

While we change n for each problem and run the fractional index a = 1.1,1.2,---,1.9,
one parameter that we have not altered is 6, which is refinement ratio. We did not
expect changing the parameter to change the trends of the condition number of the
full matrix, but to affirm that the same numerical experiment was run as above with
0 = 0.8 instead, and is visualized in Figure 4.3.

As expected, the trends are unchanged between the two Figures 4.2 and 4.3
although the matrices with 6 = 0.8 seem to be more ill-conditioned, and it took

longer computational time.

20

Comparing Condition number as « increases

107
1.1
12
108 F 1.3
14

15

2-Condition Mumber

102 10°
Size of mesh

Figure 4.2: As the fractional index, «, and the size of the problem, n, increase, the
condition number of the resulting full matrix increases exponentially (6 = 0.613).

s Comparing Condition number as « increases (7 = 0.8)
10 . .

141
12
107 13
1.4
1.5
10°f 16
1.7
1.8
1.9

10%}

2-Condition Number

107 102 102 104
Size of mesh

Figure 4.3: By altering the refinement index, 6 from 0.613 to 0.8, the trends of the
condition number of the full stiffness matrix increasing with n, « are still seen.

For example, with the tensor based low rank approximation that was discussed
earlier in this chapter, we have that if A is left by itself, it has p(A) = 85.4990, (A) =
4347.3, which both can lead to methods that either do not converge or do not
converge very fast in term of the number of iterations needed to get an approximate
solution within a certain threshold. However, if we apply our tensor based low rank
approximation, T as a left preconditioner we have p(T~'A) = 1.0004, x(T'A) =
1.0442; which is orders of magnitude better in both the spectral radius and condition
number. This should not really be that suprising though. At the most basic, since
we don’t do anything with the strong diagonally dominant aspects and we make
minor alterations with the low rank off-diagonal blocks, we could think of this as
a modified Block Jacobi preconditioner [def.1.3.5]. Upon using a few steps of this
block Jacobi schema as a preconditioner, naturally it will have those effects on an ill
conditioned matrix. However, the novelty in this idea does not come from the fact
that using the diagonally dominant part of a matrix to approximate the original, but
rather how it can be implimented using the Kronecker structure of the blocks and
the fact that these low rank off diagonal blocks could be thought of as modifications
to the main diagonal blocks.

Since this method is based around a diagonally dominant block matrix, what we
have been calling "blockdiag(A)" plus some low rank block, it seems to be of the

form

A =blockdiag(A) + > Afjéiéj (4.17)
7

where here the €; are the unit vectors, placing the low-rank subblocks. It might
be a small abuse of notation, but these E; are also a sort of placement matrices that
are expressed throughough this thesis. Since the inverse of the blockdiag(A) is well
known and we are adding a low rank update to it, this implimentation is screaming a
block analogue of the Sherman-Morrison-Woodbury which was presented in theorem

1.1.19. By the relationship that the outer product of two vectors is also the Kronecker

02

product of those two vectors, we could consider that we write this system as

A =blockdiag(A) + > Y Ef ® Aj; (4.18)
£ 1,3
Now forming the inverse would be
-1
Al= (blockdiag(A) +> Y E® Af) (4.19)
I

if we wanted to think of this as a Sherman-Morrison-Woodbury formula and solve
this directly. We can also use the iterative process described above to find the inverse
implicitly, which will also solve the equation.

For a preconditioner, since A is SPD, we would want T to also be SPD. Cur-
rently, the way that the tensor based approximation is implimented doesn’t guarentee
symmetry; however, this can easily be enforced, especially if we only put the non-
redudant blocks into the tensor and force symmetry after the decomposition. The
more important part is that T has all positive eigenvalues which means that it is
strictly positive definite. While positive definiteness is seen in all numerical exper-
iments, a proof of this fact still needs to be considered but is outside the scope of

this thesis.

23

Chapter 5
Summary, Implications, and Conclusions

5.1 Summary

In this thesis, we apply new numerical linear algebra and multilinear algebra tech-
niques to approximate a dense matrix coming from a discretized fPDE equation,
namely construct tensors at many levels, where the blocks are coming from hierar-
chical matrix structure.

To be more explicit, fPDEs are used to to model physical phenomena but can
suffer from singularities with even smooth initial data. This results in using adaptive
meshes, which breaks known Toeplitz structures, motivating the need for a new
robust method for storing and manipulating the matrices coming from these settings.
While Toeplitz structure is broken, hierarchical structure is found.

While there are matrix approximation methods for specific classes of matrices
using higher order structure, there was a need to expand these multilinear algebraic
methods to another important class of matrices - hierarchical. The first thing that
was considered is how to construct tensors at these different levels, when the sub-
blocks are found to be low-rank. Then methods were generalized to be more inclusive
of all sizes and strcture of these H-matrices. After all, adaptive meshes from the
original discretization can be any size and shape they want. These inclusive ten-
sor methods are tested against the original and allow for a more robust method.
Storage is one consideration. Because of the structure of the problem (i.e. diagonal
dominance, symmetry, positive definiteness), as well as the fact that this system
gets rather ill-conditioned as the mesh gets larger, this same framework is applied
to preconditioning these unruly matrices.

Lastly, storage, approximation, and computational flop counts are all considered

to demonstrate the possible novelty of this method compared to just locally approx-
imating these hierarchical subblocks. Also, numerical experiments show that this
method can be used to precondition those matrices. While significant work has been

conducted, there are more considerations to better impliment these methods.

5.2 Future Work

Although the method here provided a large amount of flexibility when it comes to
storage saving needs, most of the tensor rank were determined by truncating the
core of the two tensors just so that it was able to meet the tolerance threshold that
we defined. There is no guarentee that this method actually has found the minimal
storage between the two tensors and their cores for the maximal approximation.
While theoretically possible to just iterate through all the possible truncation ranks
in the two tensors, that becomes a very large problem as that lives in 6 dimension;
there are two 3-order tensors constructed. Because of that it would be interesting
to explore how integer programming techniques, especially branch and bound algo-
rithms could be used to find the optimal truncation rank so that the user defined
threshold is still met. However, if we already have nice computational speed-up,
the flip side of this would be is the extra computational work of finding the optimal
truncation rank actual worth it. In fact, most of the truncation ranks in the thesis
were just estimated and verified to be under the user defined tolerance threshold.

Expanding on this idea, there is no reason to assume that for a generic problem
the resulting hierarchical matrix will have only two levels £ of tensors comeing from
two different sizes of low rank subblocks. In fact, for 0 = 0.6130,« = 1.5,iter =
12, we get an adaptive mesh hierarchical matrix that is n = 730. Upon pruning
the matrix to discover the hierarchical structure, the structure can be visualized in
Figure 5.1.

This example shows that there are four different tensors to consider and if the
user defined tolerance must be met, it has to be balanced artfully over these levels of

tensors. For the sake of generality, we have this information in an d dimensional array,

29

Figure 5.1: An adaptive mesh that hase four levels of low-rank hierarchical structure

and there are ¢ tensors constructed from the different sized blocks of the hierarchical
matrix, Determining the optimal truncation rank is a minimization problem in Z,
which is no easy feat.

Along the same vein, it would be interesting to explore if there are any trends
about how the dimensions of the optimal tensors relate, meaning could it be ob-
served or verified that containing more lateral slices (more block matrices) with less
information about each slice more beneficial than containing more information about
the block matrices but less information about the number of slices?

It was out of a lot of convenience that we decided to use the HOSVD algorithm on
third order tensors. However, is this the best choice? Are there possible dimensions
that are higher than three where we can exploit even more structure at higher levels?

Lastly, how does this method compare to different kernels that arise in scientific
applications? Or even H-matrices arising from different scientific applications. The
methodology conducted here uses a lot of properties that arise in this discretized

fPDE system, but how many of these traits can be generalized?

26

Appendix A

A.1 List of Notation

22 PR o

T)

S

scalar

vector

matrix

maftrix approximation

™" column of A

7% row of A

tensor

tensor approximation

i*h horizontal slice of A
4™ lateral slice of A

k™ frontal slice of A
tensor-to-matrix mapping
matrix-to-tensor mapping
Placement matrix

U,V, W Orthogonal matrix

o7

Ut W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37

A.2

A.21

MATLAB Code

hmat2ten

function [lev2, lev3, full ten, Irappx, idx2, idx3] = ...

hmat2tens(hmat, fullmat, lev2, lev3, full ten, lrappx, idx2, idx3)
% Forms tensors that are then decomposed using HOSVD to get a storage
% saving formulation. They take advantage of the hierarchical approximation
% of A and actually uses these to access the real A full.

%

if hmat.flag ==
[lev2, lev3, full ten, lrappx, idx2, idx3] = ...
hmat2tens(hmat.H 11, fullmat, lev2, lev3, full ten, Irappx, idx2, idx3);
[lev2, lev3, full ten, lrappx, idx2, idx3] = ...
hmat2tens(hmat.H 12, fullmat, lev2, lev3, full _ten, lrappx, idx2, idx3);
[lev2, lev3, full ten, lrappx, idx2, idx3] = ...
hmat2tens(hmat.H 21, fullmat, lev2, lev3, full _ten, lrappx, idx2, idx3);
[lev2, lev3, full ten, lrappx, idx2, idx3] = ...
hmat2tens(hmat.H 22, fullmat, lev2, lev3, full ten, Irappx, idx2, idx3);
elseif hmat.flag == 1 %Low Rank, can HOSVD
rows — hmat.row_start: hmat.row _start + hmat.n_row — 1;
cols = hmat.col _start: hmat.col _start + hmat.n_col — 1;
Irappx(rows, cols) = hmat.rk matrix.A % hmat.rk matrix.B’;
if length(rows) == 32 %lev == 2 %size 32 x 32
lev3d = cat(3, lev3, fullmat(rows,cols));
idx3 = [idx3; {rows, cols }];
elseif length(rows) == 64 %lev == 3
lev2 = cat(3, lev2, fullmat(rows,cols));
idx2 = [idx2; {rows, cols }];
end
elseif hmat.flag == —1 %Full rank, no advantage
% construct full tensor?
rows — hmat.row_start: hmat.row_ start + hmat.n_row — 1;
cols = hmat.col _start: hmat.col _start + hmat.n_col — 1;
Irappx(rows, cols) = hmat.full matrix;
full ten = cat(3, full ten, hmat.full matrix);
end

end

o8

Bibliography

[1]

2]

3]

[10]

[11]

[12]

[13]

[14]

Chapter 8 further applications of fractional models, in North-Holland Mathe-
matics Studies, Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo,
eds., vol. 204 of Theory and Applications of Fractional Differential Equations,
North-Holland, pp. 449-468.

Low-Rank Matrices and Matriz Partitioning, Lecture Notes in Computational
Science and Engineering, Springer, 1 ed., pp. 9-47.

DANIELE. BERTACCINI AND FABIO DURASTANTE, Block structured precondi-
tioners in tensor form for the all-at-once solution of a finite volume fractional
diffusion equation, 95, pp. 92-97.

DANIELE BERTACCINI AND FABIO DURASTANTE, Limited memory block pre-

conditioners for fast solution of fractional partial differential equations, 77,
pp. 950-970.

STEFFEN BORM, LARS GRASEDYCK, AND WOLFGANG HACKBUSCH, Intro-
duction to hierarchical matrices with applications, 27, pp. 405-422.

RAayMOND H. CHAN, The spectrum of a family of circulant preconditioned
toeplitz systems, 26, pp. 503-506. Publisher: Society for Industrial and Ap-
plied Mathematics.

RaymMoOND H. CHAN AND MICHAEL K. NaG, Conjugate gradient methods for
toeplitz systems, 38, pp. 427-482. Publisher: Society for Industrial and Applied
Mathematics.

RaymMOND H. CHAN AND GILBERT STRANG, Toeplitz equations by conjugate
gradients with circulant preconditioner, 10, pp. 104-119.

SHENG CHEN, JiE SHEN, AND Li-LiaAN WANG, Generalized jacobi functions
and their applications to fractional differential equations.

PiNGFEI DAL, QINGBIAO WU, HONG WANG, AND XIANGCHENG ZHENG, An
efficient matrix splitting preconditioning technique for two-dimensional unsteady
space-fractional diffusion equations, 371, p. 112673.

LieveEN DE LATHAUWER, BART DE MOOR, AND JOOS VANDEWALLE, A mul-
tilinear singular value decomposition, 21, pp. 1253-1278. Publisher: Society for
Industrial and Applied Mathematics.

GENE H. GoLuB AND CHARLES F. VAN LOAN, Matriz Computations, JHU
Press. Google-Books-ID: X5YfsuCWpxMC.

WOLFGANG HACKBUSCH, Survey on the technique of hierarchical matrices, 44,
pp- 71-101.

CHRISTOPHER HILLAR AND LEK-HENG LiMm, Most tensor problems are NP-
hard.

29

60

[15] FrRANK L. HITCHCOCK, The expression of a tensor or a

polyadic as a sum of products, 6, pp. 164-189. __eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm192761164.

[16] JoHAN HASTAD, Tensor rank is NP-complete, 11, pp. 644—654.

[17] TLGHIZ IBRAGHIMOV, Application of the three-way decompo-
sition for matriz compression, 9, pp- 551-565. __eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.297.

[18] MisHA E. KILMER AND ARVIND K. SAIBABA, Structured matriz approzima-
tions via tensor decompositions.

[19] TaAMARA G. KoLpA AND BRETT W. BADER, Tensor decompositions and ap-
plications, 51, pp. 455-500.

[20] JAMES G. NAGY AND MisHA E. KILMER, Kronecker product approzimation
for preconditioning in three-dimensional imaging applications, 15, pp. 604-613.
Conference Name: IEEE Transactions on Image Processing.

[21] TvaN V. OSELEDETS, Tensor-train decomposition, 33, pp. 2295-2317. Publisher:
Society for Industrial and Applied Mathematics.

[22] WILL PAZNER AND PER-OLOF PERSSON, Approzimate tensor-product precon-
ditioners for very high order discontinuous galerkin methods, 354, pp. 344-369.

[23] BRITTA SCHMITT, BORIS N. KHOROMSKIJ, VENERA KHOROMSKAIA, AND
VOLKER SCHULZ, Tensor method for optimal control problems constrained by
fractional 3d elliptic operator with variable coefficients.

|24] DARYA A. SUSHNIKOVA AND IVAN V. OSELEDETS, Preconditioners for hierar-
chical matrices based on their extended sparse form, 31, pp. 29-40. Publisher:
De Gruyter.

[25] XUAN ZHAO, X1A0ZHE HU, WEI CAI, AND GEORGE EM KARNIADAKIS, Adap-
tive finite element method for fractional differential equations using hierarchical
matrices, 325, pp. 56-76.

61

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction to Tensors and Discretized Partial Differential Equations
	Introduction to Matrices
	Matrix Structures
	Norms and Error

	Introduction to Tensors
	Turning Matrices into Tensors and Back Again
	Tensor Ranks and Decompositions

	Introduction to discretized PDEs
	Preconditioning
	Hierarchical Matrices (H - matrices)
	Fractional Partial Differential Equations

	Research Question - how to approximate and precondition the dense matrix in an efficient way?
	What has been done
	Leverage the approximation
	Leverage the Structure

	Research and Experimental Design
	Overview
	Hierarchical Matrix Algorithm for 2L-sized matrices
	Alternative Algorithms for Matrices not of 2L.
	Padding
	Truncating

	Research Results
	Storage
	Naive
	Low Rank Matrices
	Tensor-based Methods
	Additional Storage Considerations

	Approximation
	Speed of Mat-vec
	Preconditioning

	Summary, Implications, and Conclusions
	Summary
	Future Work

	
	List of Notation
	Matlab Code
	hmat2ten

	Bibliography

