
A TALE OF TWO TENSORS : USING

HIERARCHICAL AND BLOCK LOW RANK

MATRICES TO MAKE

PRECONDITIONERS AND SAVE

STORAGE

A thesis

submitted by

Mitchell T. Scott

in partial ful�llment of the requirements

for the degree of

Master of Science

in

Mathematics

TUFTS UNIVERSITY

May 2023

© Copyright 2023 by Mitchell T. Scott

Advisor: Professor Misha E. Kilmer

ii

Abstract

Hierarchical matrices are commonly encountered while solving discretized fractional

di�erential equations, such as those arising in the modeling of turbulence, �nancial

markets, and continuum mechanics. Unfortunately, such matrices are dense (i.e., a

high percentage of the entries in the matrices are non-zero), so that the cost of storing

and accessing elements in the matrices limits the size of the problems that can be

handled on current computer architectures. However, such matrices are known to

have so-called hierarchical structure: various o�-diagonal sub-blocks have low-rank.

We take advantage of this recursive hierarchical structure to accumulate these low-

rank blocks into tensors at multiple levels. For each of these third order tensors,

we form approximated tensor decompositions and use the tensor approximations to

form a matrix approximation. Lastly, we discuss how to leverage this hierarchical

and Kronecker structure to construct a preconditioner for these systems.

iii

To those who never stopped believing in me, even when I had.

iv

Acknowledgements

First, I need to acknowledge my advisor, Misha Kilmer, for her unwavering support

and counseling. She has always been so willing to answer my silly questions as my

numerical analysis professor even before and de�nitely during this thesis process. She

has helped me understand what good research is and can look like. Her willingness to

carve out time out of her extremely busy schedule to answer panicked emails or give

me feedback has meant a lot. I appreciate her compassion and understanding when

I had a busy week and wasn't able to give results, or when the results I had were

less than promising. On those tough days, our mutual enthusiasm of this project

kept me going. It has been great to have the opportunity to see Misha, in so many

di�erent facets of academia � my professor, my research advisor, and the professor

for whom I am a TA. The lessons you have imparted on me will stick with me as an

academic.

Thank you to everyone who took time to come to the weekly research meetings

and be on my thesis committee � James Adler, Xiaozhe Hu, and Arvind Saibaba.

The recommendations in papers, GitHub repos, books, and your individualized lec-

tures as well as your incredible patience have reinforced my awe for computational

math and allowed me to grow as a mathematician. Additional thanks to James,

Liz, and JC for the opportunities to present my research publicly. I also need to

thank Sebastian Bozlee, Robert Lemke Oliver, and Kasso Okoudjou for being great

professors and mathematical mentors.

Thank you to Sarah, Noah, and Chris. They have been the �rst line of defense

for graduate students and their support keeps the department functional, fed, and

ful�lled.

The graduate student community here is truly unmatched in terms of support

and camaraderie; thank you all for making my time here so special. I want to thank

my OGSM mentees� Kate and Miranda� they mentored me a lot, more than I

ever did them, never letting me forget my humanity. I am also so appreciative of

v

the huddle room 515 and Torie for our early morning Analysis study-turned-rant

sessions as we embarked on the tumultuous PhD Admissions and Master's thesis

processes together. We made it! I want to thank Alex for being a friendly face in a

large crowd and teaching me about the life work balance and protecting ourselves in

academia.

Life as a graduate student can also revolve only about school, so I am thankful for

those who gave me opportunities to turn my brain o� and have fun outside of JCC. I

want to thank Alicia and Drew for sticking by me for so long and always reminding me

of how far I've come and never letting me forget all my other non-scholarly attributes.

Many thanks to the Backman family for always being so welcoming and supportive,

truly providing a home away from home. I am appreciative of Michael who indulged

my math stories any time, anywhere and talked about math departments of old.

Thanks to Abdel for always making sure that schedules worked out so I could put

school �rst.

Lastly, I am eternally grateful for my parents, Tim and Rhonda. They answer

the phone whenever I call (and on stressful weeks, that's quite a feat), and they are

always in my corner. They sacri�ced so much to get me to where I am, and as I

get older, I am only starting to comprehend the time, the money, and mostly the

emotional labor. They taught me a metric for success from a very young age, a

metric I still use today. I hope they see that I'm being the �best little Mitchell [I]

can be�.

vi

Contents

List of Tables viii

List of Figures ix

List of Algorithms xi

1 Introduction to Tensors and Discretized Partial Di�erential Equa-

tions 2

1.1 Introduction to Matrices . 2

1.1.1 Matrix Structures . 4

1.1.2 Norms and Error . 6

1.2 Introduction to Tensors . 7

1.2.1 Turning Matrices into Tensors and Back Again 8

1.2.2 Tensor Ranks and Decompositions 10

1.3 Introduction to discretized PDEs . 14

1.3.1 Preconditioning . 15

1.3.2 Hierarchical Matrices (H - matrices) 17

1.3.3 Fractional Partial Di�erential Equations 18

2 Research Question - how to approximate and precondition the

dense matrix in an e�cient way? 21

2.1 What has been done . 21

2.2 Leverage the approximation . 25

2.3 Leverage the Structure . 28

3 Research and Experimental Design 30

vii

3.1 Overview . 30

3.2 Hierarchical Matrix Algorithm for 2L-sized matrices 30

3.3 Alternative Algorithms for Matrices not of 2L. 33

3.3.1 Padding . 34

3.3.2 Truncating . 35

4 Research Results 40

4.1 Storage . 40

4.1.1 Naive . 40

4.1.2 Low Rank Matrices . 41

4.1.3 Tensor-based Methods . 42

4.1.4 Additional Storage Considerations 44

4.2 Approximation . 47

4.3 Speed of Mat-vec . 50

4.4 Preconditioning . 50

5 Summary, Implications, and Conclusions 54

5.1 Summary . 54

5.2 Future Work . 55

A 57

A.1 List of Notation . 57

A.2 Matlab Code . 58

A.2.1 hmat2ten . 58

Bibliography 59

viii

List of Tables

3.1 Using our toy problem, three categories are found 33

4.1 Storage accounting for toy problem (θ = 0.613, α = 1.5) using method

in [25]. 41

4.2 Generalization of storage accounting for toy problem, using hierarchi-

cal low rank blocks . 42

4.3 Storage Accounting for toy problem (θ = 0.613, α = 1.5) using hmat2ten

with truncation ranks lev2 ∈ R47×47×4,lev3 ∈ R32×32×10 43

4.4 Generalizeation of Storage accounting for toy problem, using tensor

based methods on low rank blocks . 43

4.5 Comparing relative errors between the proposed tensor based methods

and literature using a similar compression benchmark. 47

ix

List of Figures

1.1 A visualization of the di�erent slices of a tensor, A ∈ Rm×p×n. Note

that each of these slices is a matrix in its own right. 8

1.2 The original matrix M is mapped into a tensor T , which is then

approximated using a tensor decomposition, T̂ . Lastly, T̂ is mapped

back to a matrix M̂. 9

1.3 The bijective mapping between an m × n matrix and an m × 1 × n

tensor. The forward function is called "twist" while the inverse

function is "squeeze". 9

1.4 We can twist these submatrices into lateral slices of a tensor. Simi-

larly, we can twist the lateral slices back into a matrix. 10

1.5 The three mode−k unfoldings of a third order tensor, A. 11

1.6 On the left, a non-overlapping Jacobi block pattern is presented. On

the right, an overlapping Jacobi block pattern is presented. 17

2.1 The mesh discretization for fPDEs needs to be adaptive, which

breaks the Toeplitz structured problem. 23

2.2 When a matrix has block structure, it can be approximated a sum

of Kronecker products. 26

2.3 When a matrix has block structure, it can be approximated by or-

thogonal matrices, left and right multiplied by, a block-rank struc-

tured matrix. 26

2.4 A way to approximate our matrix of interest would be to ignore the

strong diagonal blocks, and map the other o�-diagonal (hopefully

low-rank) blocks into a tensor to be decomposed. 27

x

2.5 (1.) The whole matrix A, (2.) Subdivision of whole matrix A into

four subblocks A11,A12,A21, and A22, (3.) Subdivision of A.11 into

four subblocks A.1111,A.1112,A.1121, and A.1122, (4.) Subdivision

of A.11.11 into four subblocks A.11.1111,A.11.1112,A.11.1121, and

A.11.1122, (5.) The block A.11.11.11 failing the geometric stopping

criterion, stored as full, (6.) All the blocks in A.11.11 failing the ge-

ometric stopping criteria, stored as full, (7.) Subdivision of A.11.12

into four subblocks A.11.1211,A.11.1212,A.11.1221, and A.11.1222,

(8) The block A.11.12.11 satisfying the algebraic rank stopping cri-

terion, twisted into a tensor for later compression, (9) All the blocks

in A.11.12 stored according to their structure, (10) Due to symme-

try and strong diagonal dominance, all the blocks in A.11 stored

according to their structure, A.12 subdivided into four subblocks,

(11) The block A.12.11 satisifying the algebraic rank stopping con-

dition, twisted into a di�erent tensor for later compression, (12)

Repeating this process recursively unto all entries of A have been

stored. 29

3.1 For α = 1.5, the resulting matrix in R256×256 visualized in terms of

the relative magnitude of the entries. 32

3.2 The original dense matrix can be split into disjoint parts� the block

diagonal parts (darkest blue), the subblocks that turn low-rank after

three levels (medium blue), and the subblocks that turn low-rank

after two levels (lightest blue) . 32

3.3 This is the levels diagram for the adaptive mesh of size 28×28. Each

small block is 32 × 32 and the bigger blocks on the o� diagonals are

64 × 64. Once these blocks are found, they are twisted into a tensor

at each level. 33

3.4 The A(6,3) submatrix is placed in the correct location by E1
(6,3), and

all white blocks are zero. 38

xi

3.5 The A(1,3) submatrix is placed in the correct location by E2
(1,3), and

all white blocks are zero. 39

3.6 The original dense matrix is approximated by the sum of the exact

full blocks, the approximation of the low rank blocks at level 3, and

the approximation of the low rank blocks at level 2. 39

4.1 Using that our toy problem matrix is SPD, we can reformulate the

matrix to include nonoverlapping blocks along the main diagonal,

which are SPD, so to save storage, we can perform a Cholesky factor-

ization and store one of the Cholesky factors. This cuts our storage

in half. 47

4.2 As the fractional index, α, and the size of the problem, n, increase,

the condition number of the resulting full matrix increases exponen-

tially (θ = 0.613). 51

4.3 By altering the re�nement index, θ from 0.613 to 0.8, the trends of

the condition number of the full sti�ness matrix increasing with n,α

are still seen. 51

5.1 An adaptive mesh that hase four levels of low-rank hierarchical struc-

ture . 56

xii

List of Algorithms

1 tr- Higher Order Singular Value Decomposition 13

2 Sequentially tr- Higher Order Singular Value Decomposition 13

3 Turning BLR matrices into Tensors . 25

4 Turning H-matrices into Tensors . 31

5 Turning H-matrices into Padded Tensors 34

6 Turning H-matrices into Truncated Tensors 35

7 Turning Tensors into H-matrices . 36

1

A Tale of Two Tensors: Using Hierarchical and Block Low Rank Matrices to Make

Preconditioners and Save Storage

2

Chapter 1

Introduction to Tensors and Discretized

Partial Di�erential Equations

Many �elds - like �nancial mathematics and �uid dynamics - can be accurately

modeled by fractional partial di�erential equations (fPDEs). However, like most

interesting problems, there is either no analytic solution to these fPDEs, or it is not

feasible without using a computational method. One such method is to take the

discretization matrix and see if we can extract and exploit any latent structure by

taking this matrix into a higher level tensor. This hidden structure is used to make

computational methods solve the problem at hand 1.) using fewer �oating-point

operations flops, and 2.) using less memory. The following thesis is an attempt to

investigate a tensor-based numerical method to solve these fPDE problems.

1.1 Introduction to Matrices

De�nition 1.1.1 (Matrix) A matrix M is a two dimensional rectangular array of

numbers. We say that M ∈ Fm×n, if M has m rows and n columns, and each of the

mij, or the element of M in the ith row and the jth column, all belong to some �eld

F. In this research, we exclusively use F = R.

Matrices have many operations one can perform on them, such as addition, scalar

multiplication, matrix multiplication, which are all well known. A lesser known

operation, and one that is of great interest to this project is the "Kronecker Product".

De�nition 1.1.2 (Kronecker Product) Let A ∈ Rm×p,B ∈ Rn×`. Then the

3

Kronecker Product A⊗B ∈ R(mn)×(p`) is denoted as

A⊗B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11B a12B ⋯ a1pB

a21B a22B ⋯ a2pB

⋮ ⋮ ⋱ ⋮

am1B am2B ⋯ ampB

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.1)

It is straight forward to show just from the de�nition of Kronecker product how the

product of two Kronecker Product matrices interact:

Corollary 1.1.3 Assuming the dimensions of the following matrices work out, so

that for A,B,C,D, we have

(A⊗B) (C⊗D) = (AC) ⊗ (BD) (1.2)

Another operation that is useful is that of turning a matrix into a vector, which

will elicit useful properties.

De�nition 1.1.4 (Vectorization) Assume we have some matrix A ∈ Rm×n. By

vectorizing, or turning it into a vector, we see that by stacking the column vectors,

we can get a vector, vec(v) ∈ Rmn.

This concept of vecotrizing a matrix combined with Kronecker products allows us

the following property.

Corollary 1.1.5

vec(AXBT
) = (B⊗A)vec(X) (1.3)

Another useful operation we can perform on a matrix is a factorization, especially

the singular value decomposition.

De�nition 1.1.6 (Singular Value Decomposition) Let M ∈ Rm×n be a rank-r

matrix. Then the singular value decomposition (SVD) is M = UΣVT , where U ∈

Rm×m,VT ∈ Rn×n are both real, orthogonal matrices, namely UTU = Im,V
TV = In.

4

These are known as the left and right singular vectors, respectively. Lastly, Σ ∈ Rm×n

is rectangular diagonal matrix with entries σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0. These are called

the singular values of M. It is important to note that the SVD always exists, when

M ∈ Rm×n.

It is expensive to compute the singular value decomposition (SVD) algorithm [12],

so we wouldn't want to actually carry out the entire algorithm. When the singular

values decay quickly, we can approximate the rank r matrix M with an approxima-

tion rankk, k ≤ r matrix M̂. This allows us to only deal with the �rst k left and

right singular vectors, and the largest k singular values.

De�nition 1.1.7 (Rank-k Approximation) Let k < r ≤ min{m,n}. Then the

rank-k approximation of a matrix M ∈ Rm×n is M̂ ≈ UkΣkV
T
k , where Uk ∈ Rm×k,Σ ∈

Rk×k,VT
k ∈ Rk×n.

While this is certainly an approximation of the original matrix, we can actually

say something stronger. In fact, according to 1.1.8, this is the best rank-k approxi-

mation to the matrix, M.

Theorem 1.1.8 (Eckart-Young, 1936) Let A ∈ Rm×n be a rank r−matrix. The

best rank k-matrix, where k < n is the k largest singular values, accompanied with

the k largest singular vectors. Moreover,

∥A −Ak∥ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

σk+1, for the ∥⋅∥2 norm.

√
∑
r
i=k+1 σ

2
i , for the ∥⋅∥F norm.

(1.4)

1.1.1 Matrix Structures

This whole project is about extracting structure from matrices so that we can exploit

that structure. Let's de�ne some common structure that appears in my work.

De�nition 1.1.9 (Toeplitz Matrix) This is also known as "constant diagonal�

5

matrix. Let A ∈ Rm×n, then A is called Toeplitz if it meets the following criteria:

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a−1 a−2 ⋯ ⋯ a−(n−1)

a1 a0 a−1 ⋱ a−(n−2)

a2 a1 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ a−1 a−2

⋮ ⋱ a1 a0 a−1

am−1 ⋯ ⋯ a2 a1 a0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.5)

While �nding structure in the elements is great, we also want to �nd structure

on more of a block level, where "blocks" are submatrices of the overall matrix.

De�nition 1.1.10 (Block Toeplitz) The de�nition of the "Block Toeplitz" matrix

is the exact same except we are replacing scalars with matrices themselves. Let

A ∈ Rmp×nl, with m × n blocks, each of these blocks Ai is of the size p × l, then A is

called a Block Toeplitz matrix if it meets the following criteria:

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0 A−1 A−2 ⋯ A−(n−1)

A1 A0 A−1 ⋱ A−(n−2)

A2 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ A1 A0 A−1

Am−1 ⋯ A2 A1 A0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.6)

Remark 1.1.11 It is not hard to see that we can write this block matrix using an

alternative formulation with the concept of a Kronecker product. For example, the

last block matrix could also be

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0

0 1 0 ⋱ 0

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ 0 1 0

0 ⋯ 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗A0 +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0

0 0 1 ⋱ 0

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ 0 0 1

0 ⋯ 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗A−1 +⋯ (1.7)

6

= ∑
i

Ei ⊗Ai (1.8)

where Ei ∈ Rm×n are matrices that "place" the blocks matrices where they need to

be. This means that the block Toeplitz matrix A can be thought of as a sum of

Kronecker products with those blocks. While the example above was demonstrated

with a block Toeplitz matrix, this general framework works for any block matrix

(even if the blocks are di�erent sizes) just by changing the Ei "placement matrices".♢

De�nition 1.1.12 (Symmetric Matrix) A matrix A ∈ Rn×n is symmetic if and

only if A = AT , or for every i, j in the row space of A, then aij = aji.

De�nition 1.1.13 (Positive De�nite Matrix) A symmetric matrix A ∈ Rn×n is

positive de�nite if for all nonzero real-valued vectors z⃗, then z⃗TAz⃗ > 0.

Remark 1.1.14 If a matrix is both symmetric and positive de�nite, we will call

them SPD. A property of SPD matrices is that all eigenvalues λi > 0, which means

that it is invertible, as it is of full rank. ♢

1.1.2 Norms and Error

De�nition 1.1.15 (Frobenius Norm) Let A be an m×n matrix with rank r. The

Frobenius norm of this matrix is the square root of the sums of the absolute squares

of all of the elements, or the square root of the trace of ATA, or the square root of

the sums of the singular values of the matrix. Mathematically,

∥A∥F ∶=

¿
Á
ÁÀ

m

∑
i=1

n

∑
j=1

∣aij ∣2 (1.9)

∶=
√

tr(ATA) (1.10)

∶=

¿
Á
ÁÀ

r

∑
i=1
σ2i (A) (1.11)

De�nition 1.1.16 (Spectral Norm) Let A be anm×n matrix. The spectral norm

of this matrix is the square root of the largest eigenvalue of ATA or the largest

7

singular value of A. Mathematically, we have

∥A∥2 ∶=
√
λmax(ATA) (1.12)

∶= σmax(A) (1.13)

Remark 1.1.17 This is called the spectral norm because it is related to the spectral

radius of a matrix, which is the largest magnitude of an eigenvalue, ∣λmax∣. ♢

Lemma 1.1.18 By application of the above de�nitions paired with the de�nition of

Kronecker products, one can show that for matrices A ∈ Rm×n,B ∈ Rp×`, we have

∥A⊗B∥2 = ∥A∥2∥B∥2 (1.14)

∥A⊗B∥F = ∥A∥F ∥B∥F (1.15)

Theorem 1.1.19 (Sherman-Morrison-Woodbury Formula, 1949) Let A ∈ Rn×n

be an invertible matrix, and let U ∈ Rn×k,V ∈ Rk×n, where k < n. If we want to up-

date A by UVT , then assuming (Ik +VA−1U) is invertible, we have a numerically

cheap way of computing (A +UVT)
−1

if we know what A−1 is already, which is

(A +UVT)
−1

= A−1
−A−1U(Ik +VA−1U)

−1
VA−1 (1.16)

De�nition 1.1.20 (Absolute and Relative Error) Let Â be a matrix approx-

imation to the matrix A. Then the absolute error, ∥A − Â∥ is just the distance

between the matrix and its approximation using whatever norm we are using. The

relative error is the absolute error inversely scaled by the norm of the original matrix,

namely
∥A−Â∥
∥A∥ .

1.2 Introduction to Tensors

Although the de�nition of a "tensor" might have di�erent meanings to di�erent

�elds, we will motivate our de�nition by examples. A scalar c, is a 0-way, or 0th

order tensor, a vector v⃗ is a 1-way, or 1st order tensor, a matrix, M is just a 2-way

8

Figure 1.1: A visualization of the di�erent slices of a tensor, A ∈ Rm×p×n. Note that
each of these slices is a matrix in its own right.

or 2nd order tensor. For convention, we use the word "tensor" to mean a 3+ order

tensor, and refer to anything less than this by their more common names� scalars,

vectors, or matrices.

De�nition 1.2.1 (Tensor) With that de�nition let A ∈ Rn1×n2×⋯×nd be a d-way

array, with elements ai1,i2,⋯,id .

Sometimes we want to access an entire row of a matrix, say the ith row of a

matrix M, we will denote that as Mi∶, where the ∶ means all the elements. Similarly,

if we wanted to talk about the jth column, we would denote that as M∶j . This same

notation is used for accessing elements of a tensor.

De�nition 1.2.2 (Slices of a Third order Tensor) A slice of a 3rd-order tensor

is simply a matrix, where one index is held �xed, and access all of the other elements

in the other two dimensions.

If we want to denote the ith horizontal slice of a tensor A, we'd write Ai∶∶, the j
th

lateral slice, we'd write A∶j∶, and k
th frontal slice, we'd write A∶∶k. The three slices

(for the third order tensor we are dealing with) are visualized in Figure 1.1.

1.2.1 Turning Matrices into Tensors and Back Again

A lot of the matrices that we encounter coming from natural and practical sources are

abundant in structure. However, this structure may not be inherent from the begin-

ning, especially when we are dealing with large dense matrices. These redundances

motivated researchers like Kilmer and Saibaba to come up with a methodology to

9

M T

M̂ T̂

Matrix-to-tensor

tr-HOSVD≈

Tensor-to-matrix

Figure 1.2: The original matrix M is mapped into a tensor T , which is then ap-
proximated using a tensor decomposition, T̂ . Lastly, T̂ is mapped back to a matrix
M̂.

Figure 1.3: The bijective mapping between an m×n matrix and an m×1×n tensor.
The forward function is called "twist" while the inverse function is "squeeze".

exploit this latent structure [18]. The example that was presented was a symmetric

positive de�nite matrix which was also block Toeplitz, so dividing the entire matrix

into these blocks, then converting to a tensor allowed the researchers to isolate only

the non-redudant information necessary to reconstruct the matrix. Then, they com-

pressed the tensor representation and mapped the tensor representation back into a

matrix, thereby uncovering other latent structure. An outline of this procedure is

given in Figure 1.2.

Once we have these blocks of structure, we can take them and convert them into

lateral slice of a tensor. This process is bijective. We do this by performing a bijective

function on these sub blocks. To turn a matrix into a tensor, we "twist" it into a

higher dimension, and to turn a tensor into a matrix, "squeeze" out a dimension.

This bijective action is visualized in Figure 1.3. So we take these blocks, twist them

into lateral slices and then concatenate these lateral slices to form a tensor as seen

in Figure 1.4.

Even though Figure 1.4 gives a visual understanding of the bijective mapping

in [18], it fails to demonstrate the novelty. If the �rst matrix in the Figure had no

10

Figure 1.4: We can twist these submatrices into lateral slices of a tensor. Similarly,
we can twist the lateral slices back into a matrix.

underlying block structure, then this is exactly what would happen, but this is not

the case we are dealing with. In fact, for a block Toeplitz matrix, most of the blocks

are repeated and don't need to be included in the tensor. Recall that a block Toeplitz

matrix is constant along the diagonals, so it is uniquely speci�ed by mn − 1 blocks-

the p blocks along the �rst row, and the n blocks along the �rst column, exlcuding

the repetition of the (1,1) block. The method in [18] was designed speci�cally for

block-structured matrices, so the tensor to be decomposed stores fewer entries then

the (possibly dense) starting matrix. The tensor stores only non-redundant blocks,

arising from the block structure, symmetry arguments, etc. Our goal will be to

generalize their approach for a special class of dense matrices.

1.2.2 Tensor Ranks and Decompositions

For matrices, the rank is well de�ned and can be computed in polynomial time in the

size of the matrix. For tensors, however, there is more than one notion of rank, and

which rank depends on the decomposition used. Once we make a tensor, it is time to

�nd the rank and illuminate it. This is done through a tensor decomposition. While

there are many di�erent kinds of tensor decompositions, we are only going to talk

about the CANDECOMP/PARAFAC (CP) decompositon [15] and the tr-HOSVD,

11

Figure 1.5: The three mode−k unfoldings of a third order tensor, A.

or the truncated-Higher Order Singular Value Decomposition [11]. First we need

to de�ne a few more properties that arise from higher dimensions. While we now

have a way of talking about these slices, we can use that to reorder the structure

and make tensors matrices by unfolding them, and matrices into tensors by refolding

them. We do that through tensor unfoldings, sometimes called "matricization". We

see the di�erent ways of unfolding a third order tensor in Figure 1.5.

De�nition 1.2.3 (kth-mode Tensor Unfolding) Let A ∈ Rn1×n2×⋯×nd be a d-

way tensor. Then the kth-mode unfolding is de�ned as

A(k) ∈ Rnk×n1n2⋯nk−1nk+1⋯nd (1.17)

Note that the ordering ultimately doesn't matter as they will just be di�erent per-

mutations of the same tensor. As long as each unfolding is performed, the work is

consistent.

De�nition 1.2.4 (mode-k product) The mode-k product is a way of denoting a

tensor-matrix product, where the tensor is unfolded in the kth mode and left multiplied

12

by a matrix, assuming matrix dimensions match. Mathematically,

A×i U ∶= UA(i) (1.18)

Now that we have de�ned this operation, the following higher-order SVD follows

nicely. This is the natural generalization of the standard SVD which we already

de�ned in 1.1.6.

De�nition 1.2.5 (CP decomposition [15]) The CP decomposition, which stands

for CANDECOMP (canonical decomposition)/PARAFAC (parallel factors) is ex-

pressing the tensor as a �nite sum of rank - one tensors. For a tensor X ∈ RI×J×K ,

we de�ne the CP decomposition as

X ≈
R

∑
r=1

ar ○ br ○ cr (1.19)

where 0 < R < ∞,ar ∈ RI ,br ∈ RJ ,cr ∈ RK for r = 1,2,⋯,R, and ○ is the standard

vector outer product.

De�nition 1.2.6 (HOSVD [11,18]) Once we have unfolded the tensors along modes

1,2 and 3*, we perform an SVD computation on all of the matricizations, keeping the

left singular vectors in each case, denoted U,V,W for the �rst, second, and third

matricization, respectively. Then the HOSVD is performed by computing the core

tensor G by

G ∶= A ×1 UT
×2 VT

×3 WT (1.20)

Once we have the core tensor, we can truncated it in any mode possible, or we can

keep it full rank, and then we "undo" the process to get a tensor approximation,

namely

Â ≈ Ĝ ×1 Û ×2 V̂ ×3 Ŵ (1.21)

*Since the rest of the paper deals only with third order tensors, we just say modes 1,2, and 3,
but this idea is easily extendible to any dimension tensor.

13

The standard algorithm of tr-HOSVD is given below in pseudocode in Algorithm

1, and the modi�ed algorithm of sequentially tr-HOSVD is given in Algorithm 2.

While both are presented for third order tensors with truncation ranks (r1, r2, r3),

the algorithms are easily extendable to whatever order tensor you have.

Algorithm 1 tr- Higher Order Singular Value Decomposition

Require: A ∈ Rn1×n2×n3 , truncation ranks ri, i = 1,2,3
Ai ← matricization of A along mode i
Ui ← SVD(Ai, econ)
G ← A×i U

T
i ▷ Construct Core

Â ← G ×i Ui ▷ Construct Approximation
Â ← Â(1 ∶ r1,1 ∶ r2,1 ∶ r3) ▷ Truncate
return Â

Algorithm 2 Sequentially tr- Higher Order Singular Value Decomposition

Require: A ∈ Rn1×n2×n3 , truncation ranks ri, i = 1,2,3
Ai ← matricization of A along mode i
Ui ← SVD(Ai, econ)
Ui ← Ui(∶,1 ∶ ri) ▷ Sequentially Truncate
Ĝ ← A ×i U

T
i ▷ Construct Core

Â ← Ĝ ×i Ui ▷ Construct Approximation
return Â

Remark 1.2.7 Depending on when you truncate the core, you get two di�erent out-

comes. If you truncate the core before you use it to form the tensor approximation,

that is called sequentially tr-HOSVD. However, if you truncate the �nal tensor ap-

proximation, that is called just a tr-HOSVD. Sequentially truncating a tensor results

in less memory and suprisingly similar results. ♢

When wanting to construct a low-rank approximation of a tensor, it is imporant

to know the rank or calculate it easily. However, approximating the tensor by a

sum of rank 1 tensors� (which is the CP decomposition among other names) is NP-

hard [14]. In fact, in a more general sense, tensor rank is NP-complete for �nite �elds

and NP-hard over R and C [16], which is not good since our problems are all over R.

Other properties related to tensors, like �nding or appoximating eigenvalues, �nding

�A rank-1 tensor for a third order tensor is a three-way outer product among three vectors

14

or appoximating singular values, or approximating the spectral norm of a tensor

within a certain accuracy are also known NP-hard [14].

It would be nice to know that this technique is not costing us anything in terms

of approxation error, because then that would not be advantagous. From the schema

presented in Figure 1.2, we have the following:

Lemma 1.2.8 (Kilmer, Saibaba, 2021) Let A ∈ R(`m)×(qn) and let TE[⋅] and

ME[⋅] be the associated tensor-to-matrix and matrix-to-tensor mappings respectively.

Let X = TE[A] and let T ≈ TE[A] be a tensor approximation computed using any ap-

propriate method. Then the error in the matrix approximation Â =ME[T] satis�es

∥A − Â∥F = ∥X − T∥F .

While this theorem is not going to be directly applicable to our matrix approx-

imations because our matrix-to-tensor mapping is hierarchical, it motivates us to

come up with a similar result for our matrix-to-tensor approximations.

1.3 Introduction to discretized PDEs

While most of this research is based in numerical linear algebra and tensor decom-

positions, the matrices that we are dealing with come from a discretized fractional

PDE. The following de�nitions give an approach to how these matrices are actually

constructed. Fractional PDEs are just a speci�c type of di�erential equation, so we

would expect that the solution should have some smoothness, but how is this actually

computed on a computer. Since computers are �nite-memory machines, a "mesh"

or "grid" is constructed. partitioning the domain, and the solution is computed at

those speci�c meshpoints using a �nite element schema. Now, let's touch brie�y on

what meshes can be.

If we want the error to be small, we would take n → ∞. If we wanted to solve

this using a direct solver, we would need n3 operations, and n2 pieces of memory.

That's bad! We see just from looking at this matrix, that there is some structure,

15

so using this structure we can speed up matrix-vector products (mat-vecs).

1.3.1 Preconditioning

As was just stated solving a linear system Au⃗ = f⃗ simply by computing A−1 and

applying it to f⃗ is a direct solve that requires O(n3) �ops; however, this method

is numerically instable and is very rarely used in practice. The closest might be

performing the matrix factorization A = PLU, and then performing the respective

forward and backward substitutions to solve the system. To combat the direct

methods, iterative methods are often the solver of choice because of the reduced cost

in each iteration. The golden standard of iterative methods are Krylov subspaces

methods as at each iteration, the cost is simply a matvec (A × (Ai−1x⃗) for the ith

iteration). Then the total cost of solving the linear equation is just the number of

iterations until convergence is met times the cost of the matvec.

A common approach for these iterative methods is matrix splitting, where you

take the matrix A = M −N, where M is not only invertible but also easy to invert.

For example, in Jacobi's method, M = D which is just the diagonal entries, which

is easy to invert as you can just take the inverse of each element. Another example

is Gauss-Seidel's method where M = D −U, where U is the strict upper triagular

parts of the matrix. Since this is a triangular system, the forward triangular solve

is used. This means we are hoping that we have fast convergence which comes

from the condition number of the matrix M−1A to be smaller. That is the point of

preconditioning - to converge to the �nal solution faster.

De�nition 1.3.1 (Preconditioner) Assuming P,A are SPD, like our case, a preconditioner

P of A is a matrix such that cond(P−1A) ≤ cond(A)

De�nition 1.3.2 (Left Preconditioned System) If we are trying to solve Ax =

b, then the left preconditioned system is

P−1
(Ax − b) = 0 (1.22)

16

A candidate for a possible choice of preconditioner (not a solver for our fPDE)

might be a stationary iterative method.

De�nition 1.3.3 (Stationary Iterative Methods) A stationary iterative method

is one where the iteration scheme can be manipulated into

x⃗(k) = Bx⃗(k+1) + c⃗ (1.23)

The examples above of Jacobi and Gauss-Seidel are called stationary iterative methods

since B = M−1N, and B = (D − U)−1L respectively, where L is the strict lower

triangular part of A.

Remark 1.3.4 While of course we don't use preconditioners for something as simple

as a stationary iterative method, we can use the idea to make a preconditioner. These

methods might be bene�cial in the long run because they are guaranteed to converge

for strongly diagonally dominant systems. ♢

The reason that matrix splitting and stationary methods are mentioned is that

the method proposed in this thesis (Chapter 3) can be thought of as a matrix split-

ting, and we can leverage that to use as a possible preconditioner. Mathematically,

we have that our matrix splitting preconditioner, P−1 could be applied to solve our

system P−1v⃗ would be a few steps of the stationary iterative method with our matrix

approximation. (To see how this relates to a matrix splitting, please consult Figure

3.6.)

De�nition 1.3.5 (Block Jacobi Preconditioning) As mentioned above, the Ja-

cobi, or block, preconditioner is just approximating the matrix by taking only the

diagonal entries, which is easy to invert. However, most scalar entried subroutines

have a block analogue; Jacobi is not unique. The block Jacobi preconditioner is tak-

ing the blocks along the main diagonal and using those to approximate the matrix.

Since we are ignoring all the other blocks, we just have to invert the matrix subblocks

along the diagonal. One could easily see how this would work for non-overlapping

block, but some alterations have been shown for overlapping diagonal blocks1.6.

17

Figure 1.6: On the left, a non-overlapping Jacobi block pattern is presented. On the
right, an overlapping Jacobi block pattern is presented.

Remark 1.3.6 This might be bene�cal to the system we are analyzing later as we

have an SPD system that is strongly diagonally dominant. Lastly, with Kronecker

products, it is well know that if B has some sort of entry-wise structure, then regard-

less of what structure A possesses, A⊗B will inherit the block analogue of whatever

entry-wise structure B has. Further discussion of Block Jacobi preconditioning is

relegated to section 4.4. ♢

1.3.2 Hierarchical Matrices (H - matrices)

As a general matrix A modeling real world problems get bigger and bigger, even

on the scale of n = 1,000,000, the number of operations needed to do basic ma-

trix operations Ax⃗,A ∗B,A +B require either O(n2) or O(n3) operations naively.

This motivates the need for a di�erent matrix representation that can allow these

operations to be performed more quickly [13].

De�nition 1.3.7 (Hierarchical Matrix) A hierarchcial matrix or H-matrix is a

representation of a matrix (typically non-dense) of size n such that matrix operations

on a wide class matrices can take place in either O(n) or O(n logk n) (almost-linear)

time, where k is a tunable approximation parameter.

Remark 1.3.8 Although O(n) andO(n logk n) are not the same asymptotic behav-

ior, since logk n grows very slowly, and the fact that the constant c1 ≫ c2 preceeding

18

these two asymptotics could allow for c1n to take longer than c2n logk n, and in

practice they are very similar [2]. ♢

Since matrices are very rarely globally low rank, the way that the H-matrix �nds

these blocks of low rank is through subdivision of the matrix and it is called cluster

tree construction, trying to �nd "admissible blocks" or low rank blocks, as this thesis

will call them. This leads to a hierarchical structure of the cluster tree, the ability to

�nd these low-rank blocks, factorize them, and still overall approximate the original

matrix well, as illustrated by the following two lemmas.

Lemma 1.3.9 (Local Matrix Approximation Error [5]) The elementwise er-

ror for the matrix entries Gij approximated by the degenerate kernel g̃ in the admis-

sible block t × s (and g in the other blocks) is bounded by

∣Gij − Ĝij ∣ ≤
3

2
n−23−k (1.24)

Lemma 1.3.10 (Global Approximation Error [5]) The approximation error

∥G − Ĝ∥
F
in the Frobenius norm for the matrix Ĝ built by the degenerate kernel g̃

in the admissible blocks tν × sν , and g in the inadmissible blocks is bounded by

∥G − Ĝ∥
F
≤

3

2
n−13−k (1.25)

Because of these factorizations, and the structure in which they are constructed,

H-matrices can take a dense matrix and turn it into a data-sparse representation.

1.3.3 Fractional Partial Di�erential Equations

De�nition 1.3.11 (Uniform and Adaptive mesh) A uniform mesh is an exam-

ple of taking a domain [a, b] and dividing it into equal spaced pieces. So for example,

the uniform mesh, consisting of n nodes of a domain [a, b] ∈ R is a + ih, where

h = (b− a)/n, and i = 0,⋯, n− 1. An adaptive mesh is one that changes based on the

problem at hand. If there is an area of great change and the uniform mesh doesn't

19

meet the requirements to accurately capture the change, then we subdivide that area

adaptively so that we can capture the true nature of the solution.

Ultimately the fractional PDE equation that we want to solve is

D
α
xu(x) = f(x), x ∈ (b, c) (1.26)

where f(x) ∈ L2([b, c]). We now de�ne what the fractional di�erential operator is.

De�nition 1.3.12 (Integral de�nition) The fractional integral of order α ∈ R+ ×

iR, for function f(x):

(bI
α
x f)(x) =

1

Γ(α)
∫

x

b

f(s)

(x − s)1−α
ds , x > b (1.27)

De�nition 1.3.13 (Riesz fractional derivative) The Riesz fractional derivative

of order α ∈ (1,2) for the function f(x):

D
α
xf(x) = −

1

2 cosαπ/2Γ(2 − α)

d2

dx2
∫

c

b
∣x − ξ∣1−αf(ξ)dξ (1.28)

= −
1

2 cosαπ/2
[
RL
b D

α
xf(x) +

RL
x D

α
c f(x)] (1.29)

Remark 1.3.14 It is easy to see that if α = 2, then we have the normal Laplacian

kernel, and as α↗ 2, the resulting solution gets less smooth, which results in harder

computational problems. ♢

For generality, we are solving equation (1.26) over one dimension with Dirichlet

boundary conditons, namely u(b) = u(c) = 0. To discretize this fPDE, we are using

the standard Galerkin method, where this is projected onto a �nite dimensional

space which is a subset of the Sobolev space H1
0([b, c]).

∫

c

b
D
α
xu(x)φi(x)dx = ∫

c

b
f(x)φi(x)dx (1.30)

Now integrating by parts, and recognizing that this fPDE has homogeneous

20

Dirichlet boundary conditions, we �nd a weak solution of this equation is

∫

c

b
[

1

2Cα

d

dx
∫

c

b
∣x − ξ∣1−α u(ξ)dξ] v′(x)dx = ∫

c

b
f(x)v(x)dx , ∀v ∈ V (1.31)

, where Cα = cos(απ/2)Γ(2 − α).

Now we discretized the system using whatever discretizatoin schema we need

uh = ∑
N
j=1 ujφj ∈ V. Now we have the coe�cient vector of all the uh, which can be

rewritten as a linear system Au⃗ = f⃗ , where

Aij ∶= ∫

c

b
[

1

2Cα

d

dx
∫

c

b
∣x − ξ∣1−α φj(ξ)dξ]φ′i(x)dx (1.32)

fi ∶= ∫
c

b
φi(x)f(x)dx (1.33)

It is not hard to verify that this matrix has all nonzero elements, so this naturally

leads to some sort of approximation schema.

To elucidate any confusion, on the uniform mesh {0, 17 ,
2
7 ,⋯,

6
7 ,1}, we obtain the

following A ∈ R8×8:

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3.7391 −1.4081 −0.2967 −0.0694 −0.0309 −0.0170 −0.0106 −0.0071

−1.4081 3.7391 −1.4081 −0.2967 −0.0694 −0.0309 −0.0170 −0.0106

−0.2967 −1.4081 3.7391 −1.4081 −0.2967 −0.0694 −0.0309 −0.0170

−0.0694 −0.2967 −1.4081 3.7391 −1.4081 −0.2967 −0.0694 −0.0309

−0.0309 −0.0694 −0.2967 −1.4081 3.7391 −1.4081 −0.2967 −0.0694

−0.0170 −0.0309 −0.0694 −0.2967 −1.4081 3.7391 −1.4081 −0.2967

−0.0106 −0.0170 −0.0309 −0.0694 −0.2967 −1.4081 3.7391 −1.4081

−0.0071 −0.0106 −0.0170 −0.0309 −0.0694 −0.2967 −1.4081 3.7391

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

21

Chapter 2

Research Question - how to approximate

and precondition the dense matrix in an

e�cient way?

In this thesis, we hope to address the issue of numerical solutions of fPDEs as

e�ciently as possible. This means we need to address the issue of storage and

computations with the matrix. We aim to improve on the approximation to the

matrix, which is storage e�cient but better captures features of the original matrix.

We do this via tensor decomposition.

2.1 What has been done

As humanity seeks to better model the world around us, we see that the traditional

partial di�erential equations (PDEs) do not accurately su�ce on all natural phe-

nomena, but fractional PDEs (fPDEs) have been growing in popularity and research.

Some examples of useful applications of fPDEs include those in the �elds of physics,

anomalous di�usion, poroelastic/viscoelastic processes, �uid dynamics, signal pro-

cessing, electromagnetics, and economic/�nancial models [1]. The known numerical

methods to solve fPDEs all lead to very dense matrices that have no nonzero ele-

ments. This means that O(n2) elements have to be stored in memory, and to directly

solve this linear system, O(n3) operations have to be used. As problems are getting

larger and larger to mitigate errors, the process of storing and solving these systems

become prohibitively expensive. New techniques must be developed that make these

computational problems feasible.

One way to overcome the fact that the matrices arising from fPDE discretization

are dense is to use the Toeplitz stucture that is achieved from a uniform mesh

22

discretization over the domain. Toeplitz matrices lend themselves nicely to be solved

using Krylov subspace methods such as Conjugate Gradient and GMRES, which can

lead to fast matrix-vector products [7]. These methods are well-studied and known

to be well preconditioned by circulant matrices, which keep the Toeplitz structure

and add periodicity. Then one can use the fast Fourier Transform (FFTs) to perform

a Toeplitz matrix-vector product in O(n logn) operations, where n is the size of the

matrix (related to the spacial grid) and O(n) in memory [8]. These methods are

fast to apply and show promising clustering of the spectrum of the preconditioner

applied to the orginal matrix, thus speeding up convergence [6].

However, these methods all are depedent on the Toeplitz structure of the matrix.

In certain cases, this uniform mesh isn't suitable to deal with singularities that

happen on the boundary, so adaptive meshes have to be used, which breaks the

Toeplitz structure. For example, in Figure 2.1, which is an adaptive mesh used to

solve some fPDEs, it is easy to see that there is a smaller mesh size around the

boundaries, then a wider mesh size around one quarter into the domain, then a

return to a tighter discretization in the middle half [25]. This clearly isn't Toeplitz

as we are now dealing with an adaptive grid, so the distances between nodes will not

be uniform, so investigations into how to combat or work around these singularities

should take place. One work around might be to use known polynomials that can

combat this singularity, but this requires some knowledge of the solution and where

the singularity is [9]. This begs the question; what methods are available to us to

use less data and solve the problem faster if the mesh is non-uniform or adaptive as

to mitigate the unknown singularities of the problem?

One such way might be to use a hierarchical matrix (H-matrix), brie�y intro-

duced in 1.3.2, which has become a great tool of dealing with dense matrices espe-

cially those arising in the discretization of PDEs in a data sparse, not necessarily

actually sparse way [24]. They can take O(n2) amount of storage and represent that

as an approximation using only O(nk logn), where k is a parameter depending on

how good of an appoximation you want. Similarly, they can perform matrix opera-

tions, like the multiplication of two general n × n matrices, which typically is done

23

Figure 2.1: The mesh discretization for fPDEs needs to be adaptive, which breaks
the Toeplitz structured problem.

in O(n3) time, and perform them in O(n logk n) time [13]. This provides a powerful

starting block for numerical methods based on these dense matrices.

While there are many ideas on how to solve these fractional linear system, like

geometric multigrid [25], matrix splitting [10], and block preconditioning [4], many

of these methods rely on Kronecker product representations of the preconditioners.

While there are many di�erent ways to think of these tensor product representations,

one could think of them in dimensions higher than just the two dimensional matrices.

There are quite a few references of using higher order structures, such as tensors,

to help solve these preconditioning problems in a variety of applications from image

debluring to integral equations and PDEs [17,20]. Tensors provide a great structure

to study these problems that naturally live in higher dimension where they are, and

not that data projected on something of a lower dimension. The use of tensor based

numerical methods for these fPDEs have come about in either solving the original

problem [23] or preconditioners for the problem [3, 22]. Most of these methods

are based on the Higher Order SVD method, but Bertaccini is based on Tensor

24

Train-GMRES. Tensor-train [21] really shines in a very high number of dimensions

because it is linear in all of those dimensions, but for our problem, a small number

of dimensions is satisfactory, so we will use the HOSVD algorithm.

Because HOSVD works will in a small number of dimensions, it is well studied.

In fact, there are applications to reducing the storage requirement of the densely

populated structure, as we are truncating after the most signi�cant contributions

in each dimension. There are also many nice properties that are observed in both

the tensor and matrix setting. For example, using a Kronecker product framework

of turning a matrix into a tensor and decomposing the tensor using HOSVD, then

converting back into a block matrix has the same Frobenius error as performing a

decomposition on the original matrix [18]. This also has the advantage of dealing

with the higher dimensional data in its more natrual environment. While this method

does a great job of turning dense matrices into approximations using the HOSVD, the

method is limited by only dealing with block low rank matrices. However, what if the

matrices have a slightly modi�ed structure, of not block low rank, but hierachically

low rank (or data-sparse representations)?

The scope of this thesis is to answer exactly that. These fPDEs are dense ma-

trices, and using the Toeplitz structure doesn't account for the singularies that may

arise even with smooth initial data. Therefore, the well studied solutions and precon-

ditioners of Toeplitz matrices cannot be used. There is hierarchical structure that

can and should be exploited. This thesis develops a novel tensor based technique

that both approximate the matrix better using less stroage than known methods

and preconditioner the matrix so that the solutions can be found much faster. The

method can approximate the original sti�ness matrix in a much more sparse rep-

resentation using these hierarchial o�-diagonal blocks of low rank, which uses less

data and closer approximates the dense matrix. This method also is found to be an

e�ective preconditioner for how small it is in the number of elements in storage.

25

2.2 Leverage the approximation

The methodology for turning matrices into tensors when they are all the same di-

mension m×n, is documented in [18] to uncover possible additional latent structure,

such as block low rank structure. For convenience, the algorithm is presented below

[Algorithm 3].

Algorithm 3 Turning BLR matrices into Tensors

Require: A
Partition A into block matrices Aij ∈ Rm×n
Encode the position of Aij by Eij �placement matrix"
for All nonredundant o�-block diagonal submatrices do

Twist Aij into A lateral slices of the tensor
Perform tr-HOSVD on A to get Â
Squeeze the lateral sliced ofÂ into matrices placed in the (i, j) position by Eij

end for
return Â

This generic framework works really well if the structure is based on block low

rank as the Kronecker structure that we are encoding by Eij causes us to inherit

some structure from the original matrix to our approximation causing some savings.

However, our problem has hierarchical structure so we want to �nd a way to perform

this same principle on multiple tensors of varying block sizes.

Two main classes of structured matrices were considered in [18] � block Toeplitz

(with possible Toeplitz blocks) and block low-rank. For speci�city, please consult

their paper, as we are trying to generalize their results.

Starting with the Block Toeplitz case, if T ≈ TE[A], both the CP and Tucker

decompositions can be shown to correspond to

Â =ME[T] =
τ

∑
j=1

Cj ⊗Dj

where τ = r is the rank of the CP approx, or τ = r2 is the mode-2 truncation index.

As was previously noted, the entry-wise structure of Cj comes from the block-wise

structure of the original matrix. Similarly, if we have Dj with low rank (small r for

CP, and small r1, r3 for Tucker), then serious storage savings can occur. A diagram

26

Figure 2.2: When a matrix has block structure, it can be approximated a sum of
Kronecker products.

Figure 2.3: When a matrix has block structure, it can be approximated by orthogonal
matrices, left and right multiplied by, a block-rank structured matrix.

of what this can look like is seen in Figure 2.2.

This paper also extrapolates this �nding to a more broad class of matrices� those

with no block structure other than low rank blocks. Regardless of the tensor method

used (see [19] for more details about tensors decompositions than those presented

here), like rank r in CP and rank (r1, r2, r3) in Tucker, the approximate tensor T

when mapped back to a matrix has the following structure:

ME[T] = (I` ⊗U)structE (Gk)
p
k=1 (Iq ⊗W⊺

). (2.1)

where Gk is τ1 × τ2, U, W can be found with τ1, τ2 orthonormal columns and

τ1 = τ2 = r (CP) or τ1 = r1, τ2 = r3 (Tucker).

The struct function here is the sum of placement matrices Kronecker product-ed

with the sub-blocks of the original matrix. This allows for the product of (the sum

of) Kronecker products which have the structure mentioned in the introduction.

However, there is a common similarity between the BLR structure and the

hiarchical structure, which is the low rank o� diagonal blocks. This is going to

27

Figure 2.4: A way to approximate our matrix of interest would be to ignore the
strong diagonal blocks, and map the other o�-diagonal (hopefully low-rank) blocks
into a tensor to be decomposed.

make the idea easily extendible to our problem where we keep the most important

parts and �nd a way to approxmate the rest. With the block low rank framework,

it is easy to �x a size of submatrices, divide the matrix into these subblocks, and

twist these into a tensor. Because of the inclusion of all the blocks, or all of the

blocks o� the main diagonal (strict upper triangular if you are using symmetrical

arguments), one knows that there will be room for compression, since the full block

diagonal blocks are excluded.

Naively, we have

A ≈ blockdiag(A) +∑
i

Ei ⊗ Âi (2.2)

where the Âi are the approximations of Ai resulting from the tensor decompo-

sition, and Ei are the weighted placement matrices so that the blocks consisting of

all of the similar subblocks are accounted for and, placing them where they should

be so that ∥Ei∥
2
F = 1,∀i.

However, this process of �nding these low rank features is opaque for the hier-

archical matrix. To access these low-rank o� diagonal blocks, a recursive splitting

was performed. The �rst concept is having both a geometric and algebraic stopping

criteria, where if the block gets below a certain threshold, and it is still not low

rank, it most likely never will be, so the entire block is stored, which means there

is very little compression that can happen. To combat this, the other criteria is an

algebraic rank of the subblocks, meaning at each step the subblock rank is checked

28

and if it falls below a user-de�ned threshold, then it is considered low rank. The

entire matrix A is initally considered, and the questions of is it geometrically small

or have small algebraic rank are asked. If the answer is �no", then the matrix is

subdivided into four block matrices- A11,A12,A21, and A22. Then the process is

repeated until one or both of the conditions are satis�ed. This process teases out

the blocks that become considered low rank, and is visualized in Figure 2.5.

2.3 Leverage the Structure

With the loss of Toeplitz structure, a preconditioner for this type of problem is not as

well studied. However, based on the hierarchical structure of the matrix, we see that

the most important parts of the matrix are contained in the main diagonal blocks.

As you get farther away from the central diagonal, the rank in the o� diagonal

blocks gets smaller and smaller so we can get larger blocks that have a �xed rank.

This is reminiscent of a block Jacobi preconditioner 1.3.5. However, as opposed to

completely ignoring the o� diagonal blocks, and since we have already computed an

approximation, we are going to use the approximation as the preconditioner to get

very well conditioned systems even as n gets large and α↗ 2.

29

Figure 2.5: (1.) The whole matrix A, (2.) Subdivision of whole matrix A into
four subblocks A11,A12,A21, and A22, (3.) Subdivision of A.11 into four subblocks
A.1111,A.1112,A.1121, and A.1122, (4.) Subdivision of A.11.11 into four subblocks
A.11.1111,A.11.1112,A.11.1121, and A.11.1122, (5.) The block A.11.11.11 failing the
geometric stopping criterion, stored as full, (6.) All the blocks in A.11.11 failing
the geometric stopping criteria, stored as full, (7.) Subdivision of A.11.12 into four
subblocks A.11.1211,A.11.1212,A.11.1221, and A.11.1222, (8) The block A.11.12.11
satisfying the algebraic rank stopping criterion, twisted into a tensor for later com-
pression, (9) All the blocks in A.11.12 stored according to their structure, (10) Due
to symmetry and strong diagonal dominance, all the blocks in A.11 stored accord-
ing to their structure, A.12 subdivided into four subblocks, (11) The block A.12.11
satisifying the algebraic rank stopping condition, twisted into a di�erent tensor for
later compression, (12) Repeating this process recursively unto all entries of A have
been stored.

30

Chapter 3

Research and Experimental Design

3.1 Overview

This entire experiemental design process can be summarized by dividing the matrix

up into two categories� those subblocks that are advantagous to compress and those

that are not� turning those low-rank matrices into tensors at di�erent levels depend-

ing on the size of the low rank subblocks, performing a tensor compression based on

the HOSVD decomposition, and then mapping these approximated tensors back to

a matrix.

3.2 Hierarchical Matrix Algorithm for 2L-sized matrices

First, we need to solve the fPDE over the unit square on an adaptive mesh. Once

the code is run for that, two matrices are output (for each iteration of the mesh),

which are A_full and A, which are the full dense matrix storage and the hierarchical

representation of the full matrix, respectively. This hiearchical matrix representaion

is based on Taylor expanding the kernel of the fPDE. The adaptive code is set up to

subdivide the matrix in half both by rows and columns and then check the stopping

conditions. We will access the code's recursive nature to partion the dense matrix

into tensors.

Because of the hierarchical structure, there is no guarentee that these submatrices

are going to be the same size, so we have included a part to check how many levels

one has gone to get a low rank subblock, which is related to the size of the subblock

as everything is partitioned into 4 at each step. Keeping track of these levels, we are

able to keep subblocks of the same size together into the same tensor. While most

of the matrices we are working with only require the construction of tensors at two

di�erent sizes, that is not a requirement, and we hope to build a method that can

31

accommodate as many levels of these subblocks tensors as the code requires.

Algorithm 4 Turning H-matrices into Tensors

Require: A, a hierarchically structured approximation matrix, A_full, the full ma-
trix

▷ These come from running the compare_adaptive code
if flag == 0 then

Repeat on A_11
Repeat on A_12
Repeat on A_21
Repeat on A_22

else if flag == 1 then ▷ These have low-rank structure
See how many levels we have gone down, denoted by super script `

Twist A_full`[row_start : row_start + n_row - 1, col_start : col_start +
n_col - 1]
else if flag == -1 then ▷ These do not have low-rank structure

Store the entire block
end if
return A_full`,∀`

This algorithm works really well if we have a matrix of size 2L × 2L, as when the

matrix or submatrix that we are looking at doesn't have low rank, so to solve that

we take the submatrix we are looking at and divide it in half rows and columns, so it

is still of the form 2L−1 ×2L−1, so we can keeping doing this procedure until the stop

criteria are met. These criteria are both geometric (the size of the submatrix) as well

as algebraic (the rank of the submatrices). In fact, this leads to our �rst toy problem

of the thesis. Under the correct parameters in the original code (θ = 0.613,rk =

20, α = 1.5), we get a matrix that is in R256×256. To visualize the magnitudes of the

entries, Figure 3.1, where the yellow diagonal has entries on the order of magnitude

of 102, and the blue o� diagonal entries have order of magnitude of 10−7.

When we apply the algorithm 4, we are able to �nd the indices and �ags for

di�erent o�-diagonal blocks for the actual matrix A_full (not the H-matrix approx-

imation) as seen in Figure 3.3. To be more explicit, in this toy example one can count

that there are 30 "full" blocks (denoted by the darkest blue, along the main block

tri-diagonal) that are all R32×32, which is due to the geometric stopping condition,

10 "level 3" low-rank blocks (denoted by the medium color blue, between the main

32

Figure 3.1: For α = 1.5, the resulting matrix in R256×256 visualized in terms of the
relative magnitude of the entries.

Figure 3.2: The original dense matrix can be split into disjoint parts� the block
diagonal parts (darkest blue), the subblocks that turn low-rank after three levels
(medium blue), and the subblocks that turn low-rank after two levels (lightest blue)

tridiagonal and outer blocks) that are all R32×32 rank = 20, which is due to the al-

gebraic stopping condition, and 6 "level 2" low-rank blocks (denoted by the lightest

color blue, all the way o� the diagonal) that are all R64×64, rank = 20 (summarized

in Table 3.1).

Once we have all the indices and �ags for the di�erent levels at which the sub-

blocks become low rank, we can consider this a "matrix splitting" problem as demon-

strated in Figure 3.2. We have what we will denote as "blockdiag(A)" which is the

�rst term in the RHS (darkest blue) plus the terms consisting of the subblocks that

turn low rank at the di�erent levels. The white blocks indicate the subblocks that

are all zero, as they have already been accounted for at another term.

However, after twisting each of the block matrices within the same category and

concatenating them, we have three third order tensors. Starting with the "full"

33

Category Color Number of blocks Size Location

Full Dark blue 30 R32×32 Main diagonal to tri-diagonal

Level 3 Medium blue 10 R32×32 Between main and o�-diagonal

Level 2 Light blue 6 R64×64 O� diagonal corners

Table 3.1: Using our toy problem, three categories are found

Figure 3.3: This is the levels diagram for the adaptive mesh of size 28 × 28. Each
small block is 32 × 32 and the bigger blocks on the o� diagonals are 64 × 64. Once
these blocks are found, they are twisted into a tensor at each level.

matrix blocks, we could get a "full" tensor ∈ R32×30×32. Nevertheless, this is frivilous

to do as we assert that there is no compression possible for the "full" tensor. We

also get the medium blue "level 3" matrix blocks which get mapped into a tensor,

lev3 ∈ R32×10×32 and the light blue "level 2" matrix blocks which get mapped into a

tensor, lev2 ∈ R64×6×64.

3.3 Alternative Algorithms for Matrices not of 2L.

The one problem with adaptive meshes is that they are not going to be of the

size 2L, which means that the �rst algorithm that we were investigating will not

work on all (in fact most) of the discretized meshes. This means that we have to

�nd a way to overcome this challenge. If we started with a 2L matrix, then every

subsequent halving would also have that same structure, and we didn't have to worry

about having non-square block matrices. Now let's consider if n = 129, where we do

not have to go past the �rst splitting where we would get block matrices that are

A11 ∈ R64×64,A12 ∈ R64×65,A21 ∈ R65×64, and A22 ∈ R65×65. However, one thing is

34

nice is we know how the partition is performed in general. The left-to-right partition

of an n × n matrix will always partition the matrix so the left child contains indices

(∶,1 ∶ ⌊n2 ⌋), which is all the rows and the �rst ⌊n2 ⌋ columns, and the right child will

contain the indices (∶, ⌊n2 ⌋ + 1 ∶ end). The top-to-bottom partition works the same

way where the top child will inherit the �rst ⌊n2 ⌋ rows, and the bottom child will

inherit the last n − (⌊n2 + 1) rows. Comparing these two partitions we know that

these numbers are going to di�er at most by 1, since any number is either even or

one away from being even. If we can use this, then we can easily �nd an algorithm

that can work for any adaptive mesh that we desire.

3.3.1 Padding

Naturally, one way we can handle this problem is pad the smaller number by a row

(column) of all zeros so that the number of rows and columns are the same size,

which we will call �padded". This is presented below in Algorithm 5.

Algorithm 5 Turning H-matrices into Padded Tensors

Require: A, a hierarchically structured approximation matrix, A_full, the full ma-
trix

▷ These come from running the compare_adaptive code
if flag == 0 then

Repeat on A_11
Repeat on A_12
Repeat on A_21
Repeat on A_22

else if flag == 1 then ▷ These have low-rank structure
See how many levels, ` we have gone down
maxi ← max(n_row,n_col)
A_pad ← zeros(maxi)
A_pad`[1:n_row,1:n_col] ← A_full[rowstart : row_start + n_row - 1,

col_start : col_start + n_col - 1]
Twist A_pad` into a tensor

else if flag == -1 then ▷ These do not have low-rank structure
Store the entire block

end if
return A_pad`,∀`

To make this more concrete, if we run the code for a slightly di�erent re�nement

ratio, θ = 0.614 now, we end up with an adaptive mesh discretization leading to a

35

sti�ness matrix of n = 257. Since the parameter didn't change that much, we have

the same number of blocks that turn low-rank at all levels, but the dimension of

those blocks are di�erent, causing the tensors to be di�erent dimensions as well.

Following the know partition pattern for this problem, in the padded case, we would

get full_ten ∈ R33×33×30,lev2 ∈ R65×65×6, and lev3 ∈ R33×33×10.

3.3.2 Truncating

An equally valid way of dealing with the problem of matrices not of n = 2L is simply

truncate the greater number between the rows and columns so that they equal the

lesser number. This would then mean we would have to remove either the last row

or column of the subblock so that it �ts with all of the other subblocks in a tensor.

After all, we are going be using HOSVD to get a truncation rank that is smaller than

the original problem, so it should not matter that much. This algorithm is presented

in Algorithm 6.

Algorithm 6 Turning H-matrices into Truncated Tensors

Require: A, a hierarchically structured approximation matrix, A_full, the full ma-
trix

▷ These come from running the compare_adaptive code
if flag == 0 then

Repeat on A_11
Repeat on A_12
Repeat on A_21
Repeat on A_22

else if flag == 1 then ▷ These have low-rank structure
See how many levels` we have gone down
mini ← min(nrow,ncol)
Twist A_full`[rowstart : rowstart + mini - 1, colstart : colstart + mini - 1]

else if flag == -1 then ▷ These do not have low-rank structure
Store the entire block

end if
return A_full`,∀`.

Using the same example matrix as above for n = 257, the truncated algorithm

we would get full_ten ∈ R32×32×30,lev2 ∈ R64×64×6, and lev3 ∈ R32×32×10. Of course

this matches the dimensions of n = 256 because we are chopping o� the one row and

column that causes it to be nonsquare.

36

Once these matrices are turned into tensors by whichever way is necessary, then

they can be truncated by the tr-HOSVD algorithm. These tensor approximations will

have the same dimensions as the orginal tensors, so in the case of our toy problem, the

arguments for the mapping algorithm are lev2, a level 2 tensor of dimension R64×64×6

and lev3, a level 3 tensor of dimension R32×32×10. The outputs are l̂ev2, l̂ev3, which

have dimension R64×64×6 and R32×32×10, respectively*.

This fact was instrumental in mapping these approximation tensors to the orig-

inal location in the matrix. We are able to record either the indices or the Kro-

necker structured matrix that places these slices back where they should. So running

through the size of the frontal slices on all levels of tensors we are able to squeeze

those slices back into matrix subblocks, placing them by the information that we

saved from the original tensorization, which is presented in Algorithm 7. Since the

tensor and tensor approximations have the same dimensions, we are able to uniquely

place the correct number of blocks (frontal slices) with the same dimension (di-

mension of those frontal slices) back where we retrieved them from, resulting in a

tensor-based low rank approximation of the original matrix.

Algorithm 7 Turning Tensors into H-matrices

Require: T̂ ` the approximated tensors , idx`, keeping track of Kronecker structure
for those tensors ∀`
for every ` do

for j ← 1 ∶ size(T̂ `) do
tblrappx(idxj(1), idxj(2)) ← T̂

`(∶, ∶, j)
end for

end for
return tblrappx, a tensor-based low rank approximation

But what does this tensor-based low rank approximation look like? As stated,

because the blocks around the main tridiagonal are full, we don't try to compress

those, so these subblocks will be the same as the original. We do compression only

on those o�-diagonal subblocks that are found to be low-rank. For our problem, we

only have constructed (and approximated) two tensors, T̂ 1, T̂ 2, and then these will

*A keen observer might have noticed that before we twisted subblocks of the matrix into lateral
slices, whereas here we are concatenating them as frontal slices. This is just an artifact of the code
and nothing to worry about as these tensors we constructed are unique up to permutation.

37

get matricized into Â1, Â2, so we can write A ≈ Â.

A ≈ blockdiag(A) + Â1 + Â2 (3.1)

≈ blockdiag(A) + ∑
i∈

size(A1,3)

Ei ⊗ Â1
i + ∑

j∈
size(A2,3)

Ej ⊗ Â2
j (3.2)

where the Ei are the respective Kronecker "placement" matrices and since Â1 ∈

R32×32, the Ei ∈ R8×8, so that we are summing matrices that are all 256 × 256.

Similarly, the Ej ∈ R4×4 are the Kronecker matrices for the Â2 ∈ R64×64. Lastly, the

phrase "blockdiag" here is a little ambigous. Certainly the main diagonal blocks are

included in this function, but depending on the parameters of the fPDE, not much

else can be known. It could be as thin as block tridiagonal, or as thick as block

pentadiagonal. But the amount of blocks are not constant throughout the problem.

In an abuse of notation "blockdiag" is used to mean the blocks on and surrounding

the main block diagonal that is found to be full rank.

These placement matrices might be a little ambiguous, so to elucidate this con-

cept, we will look at where a speci�c placement matrix will place the block of inter-

est. First, let's consider E1 ∈ R8×8, with only one nonzero element. First it makes

sense that it is 8 × 8 because when you Kronecker product it with a block matrix

A6,3 ∈ R32 × 32, we end up adding a (8)32 × (8)32 matrix to the original 256 × 256

matrix, so matrix addition is well de�ned. If we wanted to place the A(6,3) matrix

38

Figure 3.4: The A(6,3) submatrix is placed in the correct location by E1
(6,3), and all

white blocks are zero.

block, the placement matrix is:

E1
(6,3) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This block placement is represented pictorially in Figure ??, where the medium blue

block is placed in the (6,3) position, and all the white blocks are the zero block

matrix.

Similarly, we can perform this operation on the largest light blue matrix block,

A(1,3) ∈ R64×64 by the placement matrix E2
(1,3), represented pictorially in Figure ??.

E2
(1,3) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

39

Figure 3.5: The A(1,3) submatrix is placed in the correct location by E2
(1,3), and all

white blocks are zero.

Figure 3.6: The original dense matrix is approximated by the sum of the exact full
blocks, the approximation of the low rank blocks at level 3, and the approximation
of the low rank blocks at level 2.

These sums of Kronecker products might not be clear so using Figure 3.6, one

can see that the matrix can be rewritten as an approximation. The original matrix

that we want to approximate is on the left hand side of the equation. The left hand

side now consists of the sum of three matrices� the �rst is the full blocks and are

the same dark blue color as the original since they are never compressed, the second

is the approximation of the low rank blocks at level 3 (originally they were medium

blue, but since they now are approximated they are medium red), and the last is the

approximation of the low rank blocks at level 2, colored light red to indicate that

these are an approximation to the original light blue blocks.

This means that even though we have a matrix with hierarchical structure, we

are able to still construct the approximation as the block diagonal "full rank" blocks

plus the sum of Kronecker products of the �rst collection of low rank blocks plus the

sum of Kronecker products of the second collection of low rank blocks.

40

Chapter 4

Research Results

4.1 Storage

To quantify the results of this proposed method, it is best to compare the three

options' storage and compression requirements as well as the relative error between

the approximation to prove novelty. These three methods are: naively storing the

entire dense matrix, approximating the hierarchical structure by Taylor expanding

the di�erential kernel, and approximating the matrix using the methods developed

in this thesis.

The metrics that will be used are called compression ratio, and data saving

percent, where

Compression Ratio ∶=
Uncompressed Size

Compressed Size
(4.1)

Data Saving percentage ∶= 1 −
Compressed Size

Uncompressed Size
, (4.2)

where uncompressed size is the starting amount of elements to store, and compressed

size is the amount of stored elements in the not-to-lossy approximation.

4.1.1 Naive

First, to naively store every element in an n × n dense matrix, like the one achieved

by discretizing the fPDE would result in n2 elements. In our relatively small case of

n = 256, that is already storage of 65,536 elements. It is conceivable that the adaptive

mesh for a larger problem has at least 1,000 gridpoints, which results in 1,000,000

elements. Since we are storing all of the elements, that is the compressed size is the

uncompressed size, the compression ratio is 1:1, and the data saving percentage is

0%. This is not ideal.

41

4.1.2 Low Rank Matrices

Another way would be to di�erentiate which subblocks of the matrices are considered

low rank, and which are not. This process has been discussed before by recursive

subdivision and can be pictorally seen in Figure 2.5. This method designates the

blocks around the main diagonal as full rank, so that means they need to be stored

in full. Next to these are the blocks that are �barely" low rank, and there is a low

rank factorization, and lastly the farthest block from the main diagonal are low rank

blocks and bene�t the most from storing them in a factorization. A detailed analysis

of storage for the test problem (α = 1.5, θ = 0.613, n = 256,rk = 20) is done below in

table 4.1.

Category Number of blocks Size of blocks Total

Full 30 (32 × 32) 30720
Level 3 10 2 × (32 × 20) 12800
Level 2 6 2 × (64 × 20) 15360

58880

Table 4.1: Storage accounting for toy problem (θ = 0.613, α = 1.5) using method
in [25].

The 2 outside of the parentheses in the "size of blocks" column of table 4.1 comes

from the fact that when there is a factorization of C ∈ Rn×n which has rank r such

that C = ABT and A ∈ Rn×r,BT ∈ Rr×n, which is why we need to store two matrices

of those size. This demonstrates that this method requires 58880 elements of storage

and if every element was stored, 65,536 would be needed, which means this method

gives a compression ratio of 1.112:1 and data saving percentage of 10.16%.

It is also advantagous to note that the rank condition of r = 20 is a parameter that

can be changed, so if we set a di�erent rank stopping criterion, then the compression

ratio would change. It is interesting to note however, that the size and structure

of the problem do not change, just the rank of the factorization C = ABT . For

example, if we set the rank condition to be r, we still have 30 full sized blocks, ten

level 3 blocks, and six level 2 blocks. And because the problem is still n = 256, that

doesn't change either, just the size of the factorization. Generalizing the results for

this method in a generic rank, we get table 4.2. Doing the math, we are able to get a

42

data saving percentage of approximately 0.53125 − 0.02148r%, where the 0.53125%

comes strictly from the storage of all full blocks along the main diagonal. More

detailed analyses for lowering storage for the main blocks are performed in Section

4.1.4.

Category Number of blocks Size of blocks Total

Full 30 (32 × 32) 30720
Level 3 10 2 × (32 × r) 640r
Level 2 6 2 × (64 × r) 768r

30720 + 1408r

Table 4.2: Generalization of storage accounting for toy problem, using hierarchical
low rank blocks

4.1.3 Tensor-based Methods

Another way that the we can �nd an approximation of the dense matrix is using

the tensor based approach that we have discussed in detail in chapter 3. For the

n = 256 toy problem, we will analyze the storage requirements for the standard H-

matrix to tensor algorithm (4). The main analysis transfers nicely over to the other

adaptations of algorithm (namely algorithms 5,6).

First, just like the method mentioned above, we do not want to try to compress

the blocks that are deemed full rank and incompressible, so we will leave them at

bay. Through the 2L sized matrix method presented (Algorithm 4), we already

have constructed tensors of all the blocks that turn "low-rank" in the same size

step and that approximation can be written as a sum of Kronecker products (Eqn.

3.2). Since we are dealing with an inital problem that is exactly n = 2L, we leave

discussion of the edge cases for later. Since we are trying to approximate the same

hierarchical matrix of our toy problem in a di�erent way, it is no suprise that there

are 30 blocks along the main tridiagonal that are considered full rank, 10 blocks that

are considered low rank in level 3, and six blocks that are considered low rank in

level 2 (darkest blue, medium blue, and light blue in Figure 3.3, respectively). For

the tr-HOSVD algorithm, we have to store not only the truncated core tensor but

also the factor matrices to be able to recreated the approximation. To mirror table

43

4.1, an accounting of the storage used for this new method is presented in table 4.3.

Category Subcategory Size of blocks Total

Full 30 (32 × 32) 30720
Level 2 lev2 core 47 × 47 × 4 8836

lev2 Factor matrix 64 × 47 3008
lev2 Factor matrix 64 × 47 3008
lev2 Factor matrix 6 × 4 24

Level 3 lev3 core 32 × 32 × 10 10240
lev3 Factor matrix 32 × 32 1024
lev3 Factor matrix 32 × 32 1024
lev3 Factor matrix 10 × 10 100

57984

Table 4.3: Storage Accounting for toy problem (θ = 0.613, α = 1.5) using hmat2ten

with truncation ranks lev2 ∈ R47×47×4,lev3 ∈ R32×32×10

The storage accounting for a general problem with only two di�erent sized tensors

with truncation ranks for lev2 of r1, r2, r3 and truncation ranks for lev3 of k1, k2, k3

is performed in table 4.4.

Category Subcategory Size of blocks Total

Full 30 (32 × 32) 30720
Level 2 lev2 core r1 × r2 × r3 r1r2r3

lev2 Factor matrix 64 × r1 64r1
lev2 Factor matrix 6 × r2 6r2
lev2 Factor matrix 64 × r3 64r3

Level 3 lev3 core k1 × k2 × k3 k1k2k3
lev2 Factor matrix 32 × k1 32k1
lev2 Factor matrix 10 × k2 10k2
lev2 Factor matrix 32 × r3 32k3

Table 4.4: Generalizeation of Storage accounting for toy problem, using tensor based
methods on low rank blocks

There are two more proposed tensor methods whose storage should be considered

� trucation and padding. For a concrete example, consider a total matrix of size

n = 257. This example is so close to n = 256, so that most of the previous analysis

is still valid, i.e. two levels of tensors are constructed. The following is how the

two methods would store the information: For the trunction method, after the �rst

subdivision we have A11 ∈ R128×128,A12 ∈ R129×128,A21 ∈ R128×129,A22 ∈ R129×129;

however it is easy to see that these methods are going to lead to di�erent sized blocks

44

being put in the same tensor, which is impossible.

4.1.4 Additional Storage Considerations

While storage of the individual elements is important, there are additional storage

features especially for placement of these blocks that need to be considered. Storing

the elements needed for subblocks is important, but if we place these elements in the

wrong location, catastrophic consequences can (and will) happen. For the hierarchi-

cal matrix representation, the information is stored in a recursive cell array. But if

it wasn't, the information can be summarized with two bits of information. At each

level, after the subdivision into four smaller blocks, the information about which side

of the horizontal division and which side of the vertical division the new subblock

is in. This means all the entries in A12 need to be stored as well as {0,1} which

says that these elements are in the top half and the right half of the matrix. This

means at each level of recursion, we have to store 2 bits. For example A.11.12.21

has 6 bits of information {0,0,0,1,1,0} to dictate that it located in the lower left

quadrant of the upper right quadrant of the upper left quadrant. The tensor based

method also has to allocate bits to placement of the blocks in the form of placement

matrices that are Kronecker producted to the necessary block entries. Using the

same example above, the entries in A12 could be placed by the following schema

⎛
⎜
⎜
⎝

0 1

0 0

⎞
⎟
⎟
⎠

⊗A12 (4.3)

⎛
⎜
⎜
⎝

(0 1) ⊗

⎛
⎜
⎜
⎝

1

0

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⊗A12 (4.4)

We see that this requires 4 pieces of information to place the entries where they

need to go. However, this has introduced a new form of structure into our prob-

lem, that will be utilized later. For the example of placing A.11.12.21 could look

45

something like

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0 0 1 0 0 0 0 0) ⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗A11.12.21 (4.5)

((1 0) ⊗ (0 0 1 0)) ⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

1

0

⎞
⎟
⎟
⎠

⊗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗A11.12.21 (4.6)

((1 0) ⊗ ((0 1) ⊗ (1 0))) ⊗

⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

1

0

⎞
⎟
⎟
⎠

⊗

⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

1

0

⎞
⎟
⎟
⎠

⊗

⎛
⎜
⎜
⎝

0

1

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⊗A11.12.21 (4.7)

This example shows that using Kronecker product structure nested inside of Kro-

necker structure has ways of reducing the number of entries needed to properly place

the subblocks. As opposed to the hierarchical way, this needs 12 pieces of information

to place it, but the structure can be exploited.

There are also symmetry advantages that were not taken advantage of, but would

greatly save storage. First, the adaptive mesh discretization still has symmetric

positive de�nite structure. In fact this can be visualized in Figures 3.1 and 3.3. This

means that for the hierarchical formulation, we have stored both A_12.A_12 and

A_21.A_21, even though they both represent the same 64× 64 subblock and are just

transposes of each other. Other extensions of this fact are that rankC = rankCT and

if C = ABT then surely CT = BAT , so any properties we would like can be found

by only considering one of these blocks. For the toy problem considering symmetry,

instead of just storing 30 full rank blocks, 10 level 3 blocks, and 6 level 2 blocks, only

46

19, 5, and 3 blocks would have to be stored to get the same result. This advantage

also applies to the tensor based methods that we proposed, as we would only have

to put half of the total blocks into our tensors to compress them.

Considering the symmetry of the low-rank o� diagonal blocks does help lower

storage costs, but the largest proportion of storage is still coming from storing the

entire blocks along the block diagonal of the matrix. This storage of the full blocks

along the block diagonal occurs in both [25] and this new proposed method. To

combat this, we utilize the SPD structure of our problem. Since the entire matrix

is SPD, we can easily apply the de�nition to see that any pricipal submatrix is

also SPD. This means that the full blocks and principal submatrices along the main

diagonal have a Cholesky factorization, A11 = LT11L11, which cuts the storage of these

blocks in half as we only have to store the L matrix, which is an lower triangular

matrix. Since both methods treat the main diagonal blocks the same way, only one

analysis is needed. We see that we can view the full rank diagonals matrices into

larger submatrices that are now still symmetric and positive de�nite. There are a few

that cannot be encorporated into a larger block matrix, so we will just store them as

a whole. Then we have block matrices along the diagonal that are all SPD, so that

means there is a Cholesky factorization for those. If the size of the submatrix is n,

that means the lower triangular Cholesky only requires
n(n+1)

2 elements of storage.

To be explicit, let's use our toy matrix as an example of how these considerations

can save storage in Figure 4.1. We have the four 32 × 32 matrices now thought of

as a SPD 64 × 64, which means that we only have to store L1 using 2080 elements

of storage, Similarly, we have 9 32 × 32 that can be thought of as a 96 × 96 SPD

principal submatrix, and only have to store L2,L3 using 4656 elemetns of storage

each. Lastly, there was no way to incorporate some of the blocks, so we can store

those 4 blocks in their entirety so that requires 32 × 32 = 1024 elements of storage

each. Lastly, the white squares in the matrix are there to denote that because of

symmetry arguments, they do not need to be stored.

47

Figure 4.1: Using that our toy problem matrix is SPD, we can reformulate the
matrix to include nonoverlapping blocks along the main diagonal, which are SPD,
so to save storage, we can perform a Cholesky factorization and store one of the
Cholesky factors. This cuts our storage in half.

4.2 Approximation

While storage considerations are an important way to compare methods, another

comparison consideration is to see how the various methods' approximation to the

original problem compare. Using the same information that is presented in table

4.1, 4.3, we compare how the hierarchical low rank approximation compares to the

full matrix arising from the discretization, as well as how the tensor based low rank

approximation compares as well from the relative Frobenius norm in table 4.5.

Method Literature [25] Proposed

Data Saving (%) 10.16% 11.52%

Rel Error 8.9805 × 10−12 5.2210 × 10−6

Table 4.5: Comparing relative errors between the proposed tensor based methods
and literature using a similar compression benchmark.

In summary for the toy problem, we do not see the same level of approximation

using consistant compression benchmarking. However, we are being unfair to our

method in this comparison as all simulations were run using the rank of the subblocks

to be rk = 20. This naturally will cause the relative error to be very low since this

48

means we are storing all 32 × 32 blocks that become low rank after three levels of

recursion to be C = ABT , where A,B ∈ R32×20. This means for the blocks that we are

approximating, isn't really an approximating. Additional testing of how the ratio of

rank and size of the subblocks will be performed to �nd a way to level the playing �eld

between the two methods in our comparison. Our method allows for varying levels

of compression and is much more �exible in terms of storage than the rigidity that

the method in [25] provided as there is no way to change storage requirements, other

than changing the rk, but this can lead to problems with convergence between the

hierarchical matrix approximation and the true sti�ness matrix as well as unstable

meshes as n increases for larger problems; both are problems with the code to solve

the fPDE, and further discussion is outside of the scope of this thesis. Also, this

n = 256 matrix, which has been extensively studied in this thesis may just be too

small to notice the large amount of potential savings that are possible. It would be

interesting to see how these methods work for larger sized problems.

As was stated, these two alternative formuations should be the same as the �rst

formulation for a matrix 2L.

Lastly, it should be noted that this method that was developed does not cost us

anything in the approximation of the original matrix in the Frobenius norm.

Lemma 4.2.1 (S., 2023) Let A be a matrix that can be expressed as

A = blockdiag(A) +∑
k

E1
k ⊗A1

+∑
k

E2
k ⊗A2 (4.8)

= blockdiag(A) +∑
`

(∑
k

E`
k ⊗A`

) (4.9)

and let Â be an approximation to A , where

Â = blockdiag(A) +∑
`

(∑
k

E`
k ⊗ Â`

) (4.10)

such that the Â` are the sum of Kronecker products that come from the matrix-to-

tensor mapping of the A` as the blocks, compressing, and then a tensor-to-matrix

mapping.

49

Then

∥A − Â∥
2

F
= ∑

`

∥X`
− T`∥2F . (4.11)

Remark 4.2.2 To give some intuition for the coming proof, consider the pictorial

reprentations of the exact matrix splitting and the approximation of the matrix

splitting (Figures 3.2,3.6, repsectively). If we notice that the blockdiag(A) are un-

changed, then �rst two terms will cancel exactly. Then for the next two terms, since

the subblocks are all disjoint restrictions of the index set, we can consider then that

the di�erence between ∥A` − Â`∥
F
,∀` are just the tensor-to-matrix mapping, and

since this is bijective, we have ∥TE[A
`] − TE[Â

`]∥
F
= ∥TE[A

`] − T̂E[A
`]∥

F
, which is

just the Frobenius norm di�erence between the tensorized original and the tensor

approximation. Therefore, it follows that the square of the absolute error of the

matrix approximation is the sum of the squares of the absolute error of the tensor

approximation. ♢

Proof: Using the powerful framework that was presented in [18], we can generalize

their proof for 1.2.8. It is important to note that we can ignore the block diagonal

term since if we were to map those blocks to a tensor, there is no truncation, and

the bijective mapping would place those exact blocks in the exact same place. In

short, ME[TE[blockdiag(A)]] = blockdiag(A). For the low rank tensors, let's have

p` lateral slices in X`, for all ` levels of tensors, resulting from the matrix-to-tensor

mapping. Also, it is important to note that Ek are all of the placement matrices,

with only one non-zero element, as we are assuming no block structure. Then we

have

∥A − Â∥
2

F
= ∥A −ME[T]∥

2
F (4.12)

= ∥∑
`

(

p`

∑
k=1

E`
k ⊗ sq(X`

∶k∶) −
p`

∑
k=1

E`
k ⊗ sq(T`∶k∶))∥

2

F

(4.13)

= ∑
`

p`

∑
k=1

∥Ek ⊗ (sq(X`
∶k∶) − sq(T`∶k∶))∥

2

F
(4.14)

50

= ∑
`

p`

∑
k=1

∥Ek∥
2
F ∥X

`
∶k∶ − T`∶k∶∥

2

F
(4.15)

= ∑
`

p`

∑
k=1

∥X`
∶k∶ − T`∶k∶∥

2

F
(4.16)

◻

4.3 Speed of Mat-vec

While a detailed analysis of speed is beyond the scope of this thesis, a few advantages

of this Kronecker-based methodology are presented. Recall Eq 1.3, which says that

(A⊗B) x⃗ ≡ vec(BXAT). Assume A ∈ Rn×n,B ∈ Rm×m, then to do the matvec on

the RHS, would take O(m2n + n2m); however, if you naively performed the LHS

on A ⊗B ∈ Rmn×mn, and is we assume that they are dense, this matvec would be

O((mn)2), which is much slower, especially for larger matrices.

4.4 Preconditioning

As was mentioned earlier, another goal of this tensor based approximation is to not

only require less storage but to be a good candidate for preconditioning. The main

idea here is as the fPDE has more nodes in the mesh, or as α ↗ 2, the full matrix

gets more ill-conditioned, so we are trying to develop a method that combats that so

the system can converge to the solution faster. The e�ect of the size of the problem,

n, and the fractional index, α on the condition number of the resulting full matrix

is visualized in Figure 4.2.

While we change n for each problem and run the fractional index α = 1.1,1.2,⋯,1.9,

one parameter that we have not altered is θ, which is re�nement ratio. We did not

expect changing the parameter to change the trends of the condition number of the

full matrix, but to a�rm that the same numerical experiment was run as above with

θ = 0.8 instead, and is visualized in Figure 4.3.

As expected, the trends are unchanged between the two Figures 4.2 and 4.3

although the matrices with θ = 0.8 seem to be more ill-conditioned, and it took

longer computational time.

51

Figure 4.2: As the fractional index, α, and the size of the problem, n, increase, the
condition number of the resulting full matrix increases exponentially (θ = 0.613).

Figure 4.3: By altering the re�nement index, θ from 0.613 to 0.8, the trends of the
condition number of the full sti�ness matrix increasing with n,α are still seen.

52

For example, with the tensor based low rank approximation that was discussed

earlier in this chapter, we have that if Â is left by itself, it has ρ(Â) = 85.4990, κ(Â) =

4347.3, which both can lead to methods that either do not converge or do not

converge very fast in term of the number of iterations needed to get an approximate

solution within a certain threshold. However, if we apply our tensor based low rank

approximation, T̂ as a left preconditioner we have ρ(T̂−1Â) = 1.0004, κ(T̂−1Â) =

1.0442, which is orders of magnitude better in both the spectral radius and condition

number. This should not really be that suprising though. At the most basic, since

we don't do anything with the strong diagonally dominant aspects and we make

minor alterations with the low rank o�-diagonal blocks, we could think of this as

a modi�ed Block Jacobi preconditioner [def.1.3.5]. Upon using a few steps of this

block Jacobi schema as a preconditioner, naturally it will have those e�ects on an ill

conditioned matrix. However, the novelty in this idea does not come from the fact

that using the diagonally dominant part of a matrix to approximate the original, but

rather how it can be implimented using the Kronecker structure of the blocks and

the fact that these low rank o� diagonal blocks could be thought of as modi�cations

to the main diagonal blocks.

Since this method is based around a diagonally dominant block matrix, what we

have been calling "blockdiag(A)" plus some low rank block, it seems to be of the

form

A = blockdiag(A) +∑
`

A`
ij e⃗ie⃗j (4.17)

where here the e⃗i are the unit vectors, placing the low-rank subblocks. It might

be a small abuse of notation, but these Ei are also a sort of placement matrices that

are expressed throughough this thesis. Since the inverse of the blockdiag(A) is well

known and we are adding a low rank update to it, this implimentation is screaming a

block analogue of the Sherman-Morrison-Woodbury which was presented in theorem

1.1.19. By the relationship that the outer product of two vectors is also the Kronecker

53

product of those two vectors, we could consider that we write this system as

A = blockdiag(A) +∑
`

∑
i,j

E`
i ⊗A`

ij (4.18)

Now forming the inverse would be

A−1
= (blockdiag(A) +∑

`

∑
i

E`
i ⊗A`

i)

−1

(4.19)

if we wanted to think of this as a Sherman-Morrison-Woodbury formula and solve

this directly. We can also use the iterative process described above to �nd the inverse

implicitly, which will also solve the equation.

For a preconditioner, since A is SPD, we would want T̂ to also be SPD. Cur-

rently, the way that the tensor based approximation is implimented doesn't guarentee

symmetry; however, this can easily be enforced, especially if we only put the non-

redudant blocks into the tensor and force symmetry after the decomposition. The

more important part is that T̂ has all positive eigenvalues which means that it is

strictly positive de�nite. While positive de�niteness is seen in all numerical exper-

iments, a proof of this fact still needs to be considered but is outside the scope of

this thesis.

54

Chapter 5

Summary, Implications, and Conclusions

5.1 Summary

In this thesis, we apply new numerical linear algebra and multilinear algebra tech-

niques to approximate a dense matrix coming from a discretized fPDE equation,

namely construct tensors at many levels, where the blocks are coming from hierar-

chical matrix structure.

To be more explicit, fPDEs are used to to model physical phenomena but can

su�er from singularities with even smooth initial data. This results in using adaptive

meshes, which breaks known Toeplitz structures, motivating the need for a new

robust method for storing and manipulating the matrices coming from these settings.

While Toeplitz structure is broken, hierarchical structure is found.

While there are matrix approximation methods for speci�c classes of matrices

using higher order structure, there was a need to expand these multilinear algebraic

methods to another important class of matrices - hierarchical. The �rst thing that

was considered is how to construct tensors at these di�erent levels, when the sub-

blocks are found to be low-rank. Then methods were generalized to be more inclusive

of all sizes and strcture of these H-matrices. After all, adaptive meshes from the

original discretization can be any size and shape they want. These inclusive ten-

sor methods are tested against the original and allow for a more robust method.

Storage is one consideration. Because of the structure of the problem (i.e. diagonal

dominance, symmetry, positive de�niteness), as well as the fact that this system

gets rather ill-conditioned as the mesh gets larger, this same framework is applied

to preconditioning these unruly matrices.

Lastly, storage, approximation, and computational �op counts are all considered

55

to demonstrate the possible novelty of this method compared to just locally approx-

imating these hierarchical subblocks. Also, numerical experiments show that this

method can be used to precondition those matrices. While signi�cant work has been

conducted, there are more considerations to better impliment these methods.

5.2 Future Work

Although the method here provided a large amount of �exibility when it comes to

storage saving needs, most of the tensor rank were determined by truncating the

core of the two tensors just so that it was able to meet the tolerance threshold that

we de�ned. There is no guarentee that this method actually has found the minimal

storage between the two tensors and their cores for the maximal approximation.

While theoretically possible to just iterate through all the possible truncation ranks

in the two tensors, that becomes a very large problem as that lives in 6 dimension;

there are two 3-order tensors constructed. Because of that it would be interesting

to explore how integer programming techniques, especially branch and bound algo-

rithms could be used to �nd the optimal truncation rank so that the user de�ned

threshold is still met. However, if we already have nice computational speed-up,

the �ip side of this would be is the extra computational work of �nding the optimal

truncation rank actual worth it. In fact, most of the truncation ranks in the thesis

were just estimated and veri�ed to be under the user de�ned tolerance threshold.

Expanding on this idea, there is no reason to assume that for a generic problem

the resulting hierarchical matrix will have only two levels ` of tensors comeing from

two di�erent sizes of low rank subblocks. In fact, for θ = 0.6130, α = 1.5,iter =

12, we get an adaptive mesh hierarchical matrix that is n = 730. Upon pruning

the matrix to discover the hierarchical structure, the structure can be visualized in

Figure 5.1.

This example shows that there are four di�erent tensors to consider and if the

user de�ned tolerance must be met, it has to be balanced artfully over these levels of

tensors. For the sake of generality, we have this information in an d dimensional array,

56

Figure 5.1: An adaptive mesh that hase four levels of low-rank hierarchical structure

and there are ` tensors constructed from the di�erent sized blocks of the hierarchical

matrix, Determining the optimal truncation rank is a minimization problem in Zd`,

which is no easy feat.

Along the same vein, it would be interesting to explore if there are any trends

about how the dimensions of the optimal tensors relate, meaning could it be ob-

served or veri�ed that containing more lateral slices (more block matrices) with less

information about each slice more bene�cial than containing more information about

the block matrices but less information about the number of slices?

It was out of a lot of convenience that we decided to use the HOSVD algorithm on

third order tensors. However, is this the best choice? Are there possible dimensions

that are higher than three where we can exploit even more structure at higher levels?

Lastly, how does this method compare to di�erent kernels that arise in scienti�c

applications? Or even H-matrices arising from di�erent scienti�c applications. The

methodology conducted here uses a lot of properties that arise in this discretized

fPDE system, but how many of these traits can be generalized?

57

Appendix A

A.1 List of Notation

c scalar
v⃗ vector
A matrix

Â matrix approximation

A∶,i ith column of A

Aj,∶ jth row of A
A tensor

Â tensor approximation

Ai∶∶ ith horizontal slice of A

A∶j∶ jth lateral slice of A

A∶∶k kth frontal slice of A
ME[⋅] tensor-to-matrix mapping
TE[⋅] matrix-to-tensor mapping

E Placement matrix
U,V,W Orthogonal matrix

58

A.2 Matlab Code

A.2.1 hmat2ten

1 function [lev2, lev3, full_ten, lrappx, idx2, idx3] = ...
2 hmat2tens(hmat, fullmat, lev2, lev3, full_ten, lrappx, idx2, idx3)
3 % Forms tensors that are then decomposed using HOSVD to get a storage
4 % saving formulation. They take advantage of the hierarchical approximation
5 % of A and actually uses these to access the real A_full.

7 %

9 if hmat.�ag == 0
10 [lev2, lev3, full_ten, lrappx, idx2, idx3] = ...
11 hmat2tens(hmat.H_11, fullmat, lev2, lev3, full_ten, lrappx, idx2, idx3);
12 [lev2, lev3, full_ten, lrappx, idx2, idx3] = ...
13 hmat2tens(hmat.H_12, fullmat, lev2, lev3, full_ten, lrappx, idx2, idx3);
14 [lev2, lev3, full_ten, lrappx, idx2, idx3] = ...
15 hmat2tens(hmat.H_21, fullmat, lev2, lev3, full_ten, lrappx, idx2, idx3);
16 [lev2, lev3, full_ten, lrappx, idx2, idx3] = ...
17 hmat2tens(hmat.H_22, fullmat, lev2, lev3, full_ten, lrappx, idx2, idx3);
18 elseif hmat.�ag == 1 %Low Rank, can HOSVD
19 rows = hmat.row_start: hmat.row_start + hmat.n_row = 1;
20 cols = hmat.col_start: hmat.col_start + hmat.n_col = 1;
21 lrappx(rows, cols) = hmat.rk_matrix.A * hmat.rk_matrix.B';
22 if length(rows) == 32 %lev == 2 %size 32 x 32
23 lev3 = cat(3, lev3, fullmat(rows,cols));
24 idx3 = [idx3; {rows, cols }];
25 elseif length(rows) == 64 %lev == 3
26 lev2 = cat(3, lev2, fullmat(rows,cols));
27 idx2 = [idx2; {rows, cols }];
28 end

29 elseif hmat.�ag == =1 %Full rank, no advantage
30 % construct full tensor?
31 rows = hmat.row_start: hmat.row_start + hmat.n_row = 1;
32 cols = hmat.col_start: hmat.col_start + hmat.n_col = 1;
33 lrappx(rows, cols) = hmat.full_matrix;
34 full_ten = cat(3, full_ten, hmat.full_matrix);
35 end

37 end

59
Bibliography

[1] Chapter 8 further applications of fractional models, in North-Holland Mathe-
matics Studies, Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo,
eds., vol. 204 of Theory and Applications of Fractional Di�erential Equations,
North-Holland, pp. 449�468.

[2] Low-Rank Matrices and Matrix Partitioning, Lecture Notes in Computational
Science and Engineering, Springer, 1 ed., pp. 9�47.

[3] Daniele. Bertaccini and Fabio Durastante, Block structured precondi-
tioners in tensor form for the all-at-once solution of a �nite volume fractional
di�usion equation, 95, pp. 92�97.

[4] Daniele Bertaccini and Fabio Durastante, Limited memory block pre-
conditioners for fast solution of fractional partial di�erential equations, 77,
pp. 950�970.

[5] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch, Intro-
duction to hierarchical matrices with applications, 27, pp. 405�422.

[6] Raymond H. Chan, The spectrum of a family of circulant preconditioned
toeplitz systems, 26, pp. 503�506. Publisher: Society for Industrial and Ap-
plied Mathematics.

[7] Raymond H. Chan and Michael K. Ng, Conjugate gradient methods for
toeplitz systems, 38, pp. 427�482. Publisher: Society for Industrial and Applied
Mathematics.

[8] Raymond H. Chan and Gilbert Strang, Toeplitz equations by conjugate
gradients with circulant preconditioner, 10, pp. 104�119.

[9] Sheng Chen, Jie Shen, and Li-Lian Wang, Generalized jacobi functions
and their applications to fractional di�erential equations.

[10] Pingfei Dai, Qingbiao Wu, Hong Wang, and Xiangcheng Zheng, An
e�cient matrix splitting preconditioning technique for two-dimensional unsteady
space-fractional di�usion equations, 371, p. 112673.

[11] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle, A mul-
tilinear singular value decomposition, 21, pp. 1253�1278. Publisher: Society for
Industrial and Applied Mathematics.

[12] Gene H. Golub and Charles F. Van Loan, Matrix Computations, JHU
Press. Google-Books-ID: X5YfsuCWpxMC.

[13] Wolfgang Hackbusch, Survey on the technique of hierarchical matrices, 44,
pp. 71�101.

[14] Christopher Hillar and Lek-Heng Lim, Most tensor problems are NP-
hard.

60

[15] Frank L. Hitchcock, The expression of a tensor or a
polyadic as a sum of products, 6, pp. 164�189. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm192761164.

[16] Johan Håstad, Tensor rank is NP-complete, 11, pp. 644�654.

[17] Ilghiz Ibraghimov, Application of the three-way decompo-
sition for matrix compression, 9, pp. 551�565. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.297.

[18] Misha E. Kilmer and Arvind K. Saibaba, Structured matrix approxima-
tions via tensor decompositions.

[19] Tamara G. Kolda and Brett W. Bader, Tensor decompositions and ap-
plications, 51, pp. 455�500.

[20] James G. Nagy and Misha E. Kilmer, Kronecker product approximation
for preconditioning in three-dimensional imaging applications, 15, pp. 604�613.
Conference Name: IEEE Transactions on Image Processing.

[21] Ivan V. Oseledets, Tensor-train decomposition, 33, pp. 2295�2317. Publisher:
Society for Industrial and Applied Mathematics.

[22] Will Pazner and Per-Olof Persson, Approximate tensor-product precon-
ditioners for very high order discontinuous galerkin methods, 354, pp. 344�369.

[23] Britta Schmitt, Boris N. Khoromskij, Venera Khoromskaia, and

Volker Schulz, Tensor method for optimal control problems constrained by
fractional 3d elliptic operator with variable coe�cients.

[24] Darya A. Sushnikova and Ivan V. Oseledets, Preconditioners for hierar-
chical matrices based on their extended sparse form, 31, pp. 29�40. Publisher:
De Gruyter.

[25] Xuan Zhao, Xiaozhe Hu, Wei Cai, and George Em Karniadakis, Adap-
tive �nite element method for fractional di�erential equations using hierarchical
matrices, 325, pp. 56�76.

61

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction to Tensors and Discretized Partial Differential Equations
	Introduction to Matrices
	Matrix Structures
	Norms and Error

	Introduction to Tensors
	Turning Matrices into Tensors and Back Again
	Tensor Ranks and Decompositions

	Introduction to discretized PDEs
	Preconditioning
	Hierarchical Matrices (H - matrices)
	Fractional Partial Differential Equations

	Research Question - how to approximate and precondition the dense matrix in an efficient way?
	What has been done
	Leverage the approximation
	Leverage the Structure

	Research and Experimental Design
	Overview
	Hierarchical Matrix Algorithm for 2L-sized matrices
	Alternative Algorithms for Matrices not of 2L.
	Padding
	Truncating

	Research Results
	Storage
	Naive
	Low Rank Matrices
	Tensor-based Methods
	Additional Storage Considerations

	Approximation
	Speed of Mat-vec
	Preconditioning

	Summary, Implications, and Conclusions
	Summary
	Future Work

	
	List of Notation
	Matlab Code
	hmat2ten

	Bibliography

