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1 Introduction

When taking a random matrix theory course, there were many generalizations to standard
mathematical ideas that had to be formulated for these random, noncommuting objects.
One of which was the HCIZ integral, which is a generalization of the Fourier Transform
for matrices.

Definition 1.1 (Harish-Chandra-Itzykson-Zuber (HCIZ) integral). The Harish-Chandra-
Itzykson-Zuber (HCIZ) integral is:

IβpA,Bq :“

ż

GpNq

dU e
Nβ
2

TrAUBU:

,

ż

GpNq

dU “ 1 (1)

where the integral is over the Haar measure of a compact groupU P GpNq “ OpNq, UpNq,
or SppNq in N dimensions and A,B are arbitrary N ˆ N symmetric, Hermitian, or
symplectic matrices with β “ 1, 2, or 4, respectively.

Remark. IβpA,Bq depends only on the eigenvalues of A and B, since if we change the
basis on either A or B, it can be absorbed into U, and we are integrating over them.

While it might not look like we can do much generalizing on this HCIZ integral, the
celebrated result in [11, 12] is that for GpNq “ UpNq which implies that β “ 2, the
integral can be exactly expressed for all N P N. In fact,

I2pA,Bq “
cN

N pN2´Nq{2

det
`

eNνiλj
˘

∆pAq∆pBq
,

where tνiu, tλiu are the eigenvalues, and ∆pAq,∆pBq are the Vandermonde determinant
of A,B, respectively. Lastly, cN “

śN´1
ℓ ℓ!.

But what is this mysterious dU? The book we used in my random matrix theory class
[15] referenced [4], when first discussing the integration of groups of physical interest.
However, it was far too advanced, so to better understand it, the Haar Measure will be
considered in great detail. For an alternative way to motivate the HCIZ integral and Haar
Measure, the interested reader can check out [2]. This is just a note set that I prepared
to better understand Haar measure and integration over matrix groups, and I am by no
means an expert. I hope this can be a gentle introduction into the topic for new readers.
Also, if there are any typos, feel free to reach out to me so that I can correct them.
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2 Haar Measure

2.1 History

Introduced by Alfred Haar in 1933, but for Lie groups it was introduced by Adolf Hurwitz
in 1897, under the name “invariant integral”. Existance and uniquness was proven by
Andre Weil in 1938 using AoC, but Henri Cartan does it without AoC in 1940.[1].

2.2 Formal Setting of Haar Measure

Definition 2.1 (Borel measure). A measure µ on a topological measure space X is called
a Borel measure iff X is Hausdorff.

Definition 2.2 (Left Haar Measure). Let G be a topological group. A left Haar Measure
on G is a nonzero regular Borel measure µ on G such that µpgAq “ µpAq, @g P G and for
all measurable subsets A of G.

Definition 2.3 (Right Haar Measure). There is also a right Haar measure with the same
conditions as above just with µpAgq “ µpAq, @g P G.

Remark (Existence and Uniqueness of Haar Measure). While existence and uniqueness
are vital properties, their proof is extremely nontrivial, as you have to go through the
typical process of verifying dµ is a measure by premeasure to outer measure to measure.
It is a long but rewarding process. However, it is not the point of my introduction to
Haar measure, so it will be assumed. If you would like to learn more, [8, 9] gives a
very detailed proof of both properties from a measure-theoretic and topological perspec-
tive. Additionally, [3] proceeds from a combinatoric angle to prove the uniqueness using
hypergraphs.

Theorem 2.1 (Existence, (Weil)). Let G be a locally compact (Haussdorff topological)
group. Then there exists a left Haar measure on G.

Corollary 2.2. Since µ is a measure, it has the following properties:

1. the measure µ is finite on every compact set: µpKq ă 8 for all compact K Ď G.

2. the measure is regular, meaning for any Borel set S,

µpSq “ inftµpUq : S Ď Uopen u “ suptµpKq : compact K Ď Uu

3. For every non-empty open subset U Ď G, then µpUq ą 0.

Remark. On an n-dimensional Lie group, Haar measure can be constructed easily as the
measure induced by a left-invariant n-form. This was known before Haar’s theorem.

Theorem 2.3 (Uniqueness, (Weil)). Let G be a locally compact group, and let µ and µ1

be two left Haar measures on G. Then, µ “ αµ1 for some α P Rą0.

While the left and right Haar measure don’t have to be the same, we can find a relationship
between them:

Corollary 2.4. Let G be a topological group. Also, let µL be a left Haar measure. For a
Borel set S, we define S´1 as the set of inverse of elements of S. Then µRpSq “ µLpS´1q

is a right Haar measure.

2
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Proof. Let G be a topological group. For some Borel S Ă G, and g P G

µRpSgq “ µLppSgq
´1

q “ µLpg´1S´1
q “ µLpS´1

q “ µRpSq.

Additionally, we should show that µR is a regular Borel Measure.

Another easily seen property is that the left invariant Haar measures also behave well
under right multiplication [19].

Example 2.5. Let µL be a left Haar measure on G. Then for any x P G, we define µ1
L

on Borel subsets S Ď G by µ1
LpSq “ µLpSxq. This µ1

L is still a left Haar Measure. Now
for any y P G,

µ1
LpySq “ µLpySxq “ µLpSxq “ µ1

LpSq.

This means by the uniqueness of the Haar measure up to a multiplicative constant, we see
there is a positive number ∆pxq such that µ1

L “ ∆pxqµL.

Similarly right invariant Haar measures behave well under left multiplication.

Example 2.6. Let µR be a right Haar measure, then for a fixed choice of a group element
x P G, and a Borel subset S Ď G., S ÞÑ µRpx´1Sq is a right invariant Haar meausre.
Again by uniqueness, we see µRpx´1Sq “ ∆pxqµRpSq, and this δpxq is independent of the
Haar measure.

Definition 2.4 (Modular function). The modular function ∆ : G Ñ R` is a continuous
Lie group homomorphism that takes values µLpSxq “ ∆pxqµLpSq, @S Ă G.

However sometimes the left and the right Haar measure agree and are the same, which
motivates:

Definition 2.5 (Unimodular). Let G be a locally compact group. If the left and right
Haar measure agree, we say that G is unimodular.

Take either of the above examples, such as µ1
L “ ∆pxqµL. µ

1
L is still a left Haar measure

but it behaves nicely with right multiplication. So if ∆pxq ” 1 for all x P G, we see

µLpSxq “ µ1
LpSq “ ∆pxqµLpSq “ µpSq,

so µL is right invariant.

Corollary 2.7. A Lie group G is unimodular iff | detAdg| “ 1, for all g P G,where
Ad : G Ñ Endppgqq is the adjoint representation of G. Also if G is connected, we can
remove the absolute value bars [6].

Remark. When the group is unimodular, we see something super cool.

ż

G

fphgq dµpgq “

ż

G

fpghq dµpgq “

ż

G

fpg´1
q dµpgq “

ż

G

fpgq dµpgq

Or the left invariant integral is the right invariant integral is the inversion integral is the
integral.

3
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Example 2.8 (Linear Affine Transformation). Recall that the linear affine transformation
is given by

"ˆ

a b
0 1

˙

: a P Rą0, b P R
*

To define the left Haar measure, we see that
ˆ

a b
0 1

˙ ˆ

c d
0 1

˙

“

ˆ

ac ad ` d
0 1

˙

`

c d
˘

ÞÑ
`

ac ad ` b
˘

JL “

ˆ

a 0
0 a

˙

detpJLq “ a2

µL “ a´2 db da

Now computing the right Haar measure
ˆ

c d
0 1

˙ ˆ

a b
0 1

˙

“

ˆ

ac bc ` d
0 1

˙

`

c d
˘

ÞÑ
`

ac bc ` d
˘

JR “

ˆ

a 0
b 1

˙

detpJRq “ a

µR “ a´1 db da

Remark. We don’t want the measure to be negative so if we slightly change the example of
the affine linear transformation to a P Rzt0u, then the left Haar measure is the same but
the right Haar measure is µR “ |a´1| db da so that we don’t have a orientation reversing
measure.

Example 2.9. Now let’s look at GLnpRq. Recall that for GL2pRq is

"ˆ

a b
c d

˙

: matrix is invertible

*

The left invariant measure preserves volumes, and we know that | detpGq| is the change
in volume of the vector, so we know

µL “
da db dc dd

ˇ

ˇ

ˇ

ˇ

det

ˆ

a b
c d

˙ˇ

ˇ

ˇ

ˇ

Now if we consider g P GLnpRq, it is not hard to see

µL “
dg

|detpgq|
n ,

where dg is the Lebesgue measure in Rn2
. This follows from the change-of-variable for-

mula. Exercise to show this is also the right Haar measure.

4
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Remark. These are very standard examples of a non-unimodular group being compared
to a uimodular group. Most texts on Haar measure use these two.

Now that we have seen some examples of unimodular groups, and exactly what groups
are unimodular, let’s solidify this concept.

Corollary 2.10. A Lie group is unimodular if it is discrete, Abelian, or compact.

Remark. As opposed to the last result on unimodular groups, this is simply an “if” proof.
Clearly the “only if” direction is violated as we have already shown that GLnpRq, which
is a noncompact group, is unimodular.

Proof. For a discrete group, both the left and right Haar measure are the counting mea-
sure. For the abelian group, left- and right-translation actions are the same. Now for a
compact group G we see that µL is finite for all compact sets and Gx “ G so

µLpGq “ µLpGxq “ ∆pxqµLpGq

and dividing through by a finite number we see 1 “ ∆pxq, @x P G.

Remark. To be concrete, the following Lie groups are unimodular:

• All Finite Groups

• Abelian groups like R,Rˆ

• Orthogonal group (compact)

• Unitary group (compact)

• classical semisimple Lie groups like SpnpRq.

You can also show that other Lie groups that are unimodular are those that are connected
and semisimple, connected and reductive, and connected and nilpotent. While there are
more Lie groups that are unimodular, we have now shown that all OpNq, UpNq, SppNq

are unimodular, which was an initial goal in understanding the HCIZ integral.

3 Examples

Theorem 3.1. Let G be a compact topological group with Haar measure µ. If G is finite,
then µptguq “ 1

|G|
for any g P G. If G is infinite, then µptguq “ 0 for any g P G.

Proof. Let G be some finite topological group. Then the group is compact as it is finite.
Since it is compact, we can uniquely identify the Haar measure by normalizing it, so this
means there is a probability measure on G. Since G is Hausdorff, we assumed it was T1,
and the singleton points are closed. So for all g, h P G,

µptguq “ µphg´1
tguq “ µpthuq

by the invariance of the Haar measure. This means that pGq “ YgPGtgu, which are all
disjoint from each other and singleton sets. Recalling that the Haar measure is also
countably additive, we observe,

µpGq “ µ

˜

ď

gPG
tgu

¸

“
ÿ

gPG
µptguq “ 1

5
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This implies that µptguq “ 1
|G|

. Then as a simple corollary, we have the measure of A Ă G

as µpAq “
|A|

|G|
, as the sum of the measures of the points in A.

Reiterating, this shows that the unique Haar measure on a finite compact group is the
uniform probability measure, as it is compact, so we can uniquely normalize it so dµ “ 1,
and it is unimodular so µL “ µR.
Now let G be an infinite compact group. Suppose that µ is the Haar measure on G. Then
by the invariance, we see µptguq “ µpth ¨ tguuq for any g. This give us

µptg1uq “ µph ¨ tg1uq “ µpg2g
´1
1 ¨ tg1uq “ µptg2uq

where h “ g2g
´1
1 , @g1, g2 P G. Now if µptguq ą 0 for some g, then for some countable

sequences of gi P G we see
ř8

i“1 µptgiuq “ µpGq “ 1 because every gi is disjoint. But we
said that µptguq “ c ą 0, and any constant nonzero sequence sums to 8. This means
µpgq “ 0.

Theorem 3.2. If G is a topological group, µ is the Haar measure and H is a µ´measurable
subgroup, the µpHq “ 1

|G{H|
if |G{H| ă 8 or µpHq “ 0 if |G{H| “ 8.

Proof. Let H be a subgroup of the compact topological group G, with Haar measure µ.
Then we know G “

Ť

gPG g ¨ H. Inclusion in one of these co-sets form an equivalence
relation on G, where a „ b ðñ b P a ¨ H.
Then each element of G{H is a left translation of H, for any g ¨H, g1 ¨H P G{H, we have
µpg ¨Hq “ µpg1 ¨Hq, and these elements are disjoint, from the last theorem, we see if G{H
is infinite then µpHq “ 0 or G{H is finite and µpHq “ 1

|G{H|
.

Both of these are proven similarly in [17].

Remark. To explicitly compute the Haar Measure:

• First, check if it is unimodular.

• Find a coordinate system for G and translate the group law into this coordinate
system.

• Do multivariable calculus.

Example 3.3. Consider Up1q “ teiθ : 0 ď θ ă 2πu. Then to integrate

ż

Up1q

fpγq dµpγq “

ż 2π

0

fpeiθq
dθ

2π

Example 3.4. Consider SUp2q which is equivalent to S3 as a topological space.

g “

ˆ

x1 ` ix4 x2 ` ix3
´x2 ` ix3 x1 ´ ix4

˙

,

where x21 ` x22 ` x23 ` x24 “ 1. Then using the spherical coordinates in R4, we have

x1 “ r cos θ

x2 “ r sin θ cosψ

x3 “ r sin θ sinψ cosϕ

x4 “ r sin θ sinψ sinϕ,

6
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then we see
ˇ

ˇ

ˇ

ˇ

det
Bpx1, x2, x3, x4q

Bpr, θ, ψ, ϕq

ˇ

ˇ

ˇ

ˇ

“ r3 sin2 θ sinψ,

Recall r2 “ 1. Then when we finish normalizing we see
ż π

θ“0

ż π

ψ“0

ż 2π

ϕ“0

fpθ, ψ, ϕq dµ , where dµ “
sin2 θ sinψ dθ dψ dϕ

2π2

Example 3.5. Lastly, we finish with SOp3q, which we can think of as rotations in 3 ´ d
space, so an arbitrary element R P SOp3q can be factored into:

R “ ABC “

¨

˝

1 0 0
0 cospθq ´ sinpθq

0 sinpθq cospθq

˛

‚

¨

˝

cospϕq 0 ´ sinpϕq

0 1 0
sinpϕq 0 cospϕq

˛

‚

¨

˝

cospψq ´ sinpψq 0
sinpψq cospψq 0

0 0 1

˛

‚,

where θ, ϕ, ψ are called “Euler angles” and are the rotation around the x´, y´, and z´axis
respectively. The angles θ, ϕ P r0, 2πq, ψ P r0, πq. By performing the determinant of the
Jacobian, we see that the differential becomes

|det J | “ sinpψq.

Finally, we normalize to see
ż 2π

θ“0

ż 2π

ϕ“0

ż π

ψ“0

fpθ, ϕ, ψq dµ , where dµ “
sinpψq dθ dϕ dψ

8π2

Remark. These computations are very popular ones as it has many physical interpreta-
tions, and was commputed separately and slightly differently in [13, 14, 20].

While I could continue to do computations of the (invariant) Haar measure for UpNq, SUpNq, OpNq, SOpNq,
etc., there is actually a generalized formula that was found.

Theorem 3.6 (Haar Measure of Unitary Group, [18]). The infinitesimal volume element
dΩ of Haar measure of unitary group of n-th order is given by the following formula.

dΩ “
ˇ

ˇIn ` H2
ˇ

ˇ

´n
dh ,

where H is the Cayley parameter of unitary matrix

U “ pIn ` iHq pIn ´ iHq
´1

and Hermitian, so that

H̃ “ H “ phijq “ paik`ibikq, paik “ aki, bki ´ bikq

and dh is the product of all differentials of n parameters,

dh “ da11 da12 ¨ ¨ ¨ dann db21 ¨ ¨ ¨ dbn,n´1 .

Theorem 3.7 (Haar Measure of Symplectic Group, [18]). For unitary symplectic group
of 2n-th order, the Haar Measure possesses the following form:

dΩ “
ˇ

ˇI ` H2
ˇ

ˇ

´pn` 1
2q
dh .

Theorem 3.8 (Haar Measure of Orthogonal Group, [18]). The Haar Measure of orthog-
onal group of m-th order is expressed as follows:

dΩ “
ˇ

ˇI ` H2
ˇ

ˇ

´n´1
2 dh .

7



RANT Seminar: Haar Measure Scott

4 Bibliography

As mentioned, I come from an applied math perspective and have taken very few algebra
classes, so most of this had to be learned to understand Haar Measure. While I cited the
resources consulted throughout this expository piece, there were other articles and books
that I used to get a solid foundation for the material. These were used much less than
the sources cited above, but I consulted the standard measure theory books to refresh my
memory on certain topics. These include Stein and Shakarchi, Folland, and Rudin. Some
more specialized resources I used sparingly are Conway’s functional text[5], Easton’s book
on group invarance in statistics has a chapter on Haar Measure [7], and Hall’s book on
Lie Groups [10]. Additionally, there is a fantastic video series on Lie Groups on Youtube.
This specific video [16] is very quick and was a great motivation for my presentation of
this material. Lastly, the structure of this seems to follow a standard treatment of Haar
Measure as set forth by [6].
This is not at all comprehensive. There are so many more ways and directions that this
can go. For example, if I hade more time I would like to look into Kakutani’s Fixed Point
Theorem, Iwasawa decompositions, Peter-Weil Theorem, and the Schur Lemma.
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