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Solution

Theorem (Nyquist - Shannon Sampling Theorem, 1915, [1] )

If a function x(t) contains no frequences higher than B hertz [s−1], then it can be
completely determined from sampling a sequence of points spaced less than 1/(2B)
seconds apart.

Key Take-away

In systems where you want to generate accurate signals from sampling data, you
must set the sampling rate high enough to prevent aliasing.

Remark

However, the number of samples needed for high frequency data or long range signals,
might be memory intesive to store explicitly. Additionally, how can you set up the
sampling rate a priori?

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 5 / 31
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Compressed Sensing

Remark

Perfect reconstruction of a signal can happen even if the N-S criterion isn’t satisfied!

Definition (Compressed Sensing)

Compressed sensing is a signal processing technique for efficiently acquiring and
reconstructing a signal, by finding solutions to underdetermined linear systems.

Theorem (Candes, Romberg, Tao (2005)[2])

Given some knowledge about a signal’s sparsity, the signal may be reconstructed with
even fewer samples than the sampling theorem requires, the basis of compressed
sensing.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 6 / 31
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Wishart Matrices

Definition (Wishart Ensemble)

The data for a Wishart Ensemble is a matrix of N × T data {xt
i }1≤i≤N ,1≤t≤T , where we

have T observations and each observation contains N variables.

Example

Wishart matrices can arise in many examples, such as:

• daily returns of N stocks over a certain time period,

• number of spikes fired by N neurons during T consecutive intervals of ∆t ,

• and so many more.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 8 / 31
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Sample Covariance Matrices

Definition (Sample Covariance Matrix)

The sample covariances of the data are given by

Eij =
1
T

T∑
t=1

xt
i xt

j . (1)

This results in an N × N matrix E, called the sample covariance matrix, which can be
written as

E =
1
T

HH⊤, (2)

where H is the N × T matrix with Hit = xt
i .

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 9 / 31
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Convergence of Wishart Matrices’ Spectrum

Theorem (Marčenko-Pastur [3])

The full Marčenko-Pastur distribribution can be written as such, let M ∈ RN×T , where
N ,T → ∞,N/T → q ∈ (0,∞). Now let λ± = σ2

(
1 ±√

q
)2

. Then the density of the
eigenvalues of M converges weakly to

ρMP(x) =
1

2πσ2

√
[(λ+ − x) (x − λ−)]+

2πqx

+

[
q − 1

q

]
+

δ(x)

(3)

where [a]+ := max{a, 0}.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 10 / 31
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Visualizing the Marčenko-Pastur Distribution

Figure 1:M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 11 / 31
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Definitions

Beta Distribution

Definition (Beta Distribution PDF)

Let x ∈ [0, 1]. The Beta distribution has two shape parameters β = [β1, β2]
⊤, which

control the growth of small and large values of x, respectively. Then the Beta
Distrbution PDF is given by

f (x;β) =
1

B(β)
xβ1−1 (1 − x)β2−1 , where (4)

B(β) =
Γ(β1)Γ(β2)

Γ(β1 + β2)
(5)

Example

To sample a vector v ∈ Rt from this distribution, we draw samples from the Beta
distribution with parameters β, and then rescale all samples by

∑t
i=1 vi . This ensures

that ∥v∥1 = 1.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 13 / 31
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Definitions

Dirichlet Distribution

Definition (Dirichlet Distribution PDF)

Also known as the multivariate Beta distribution, the Dirichlet Distribution PDF of
order K ≥ 2 with parameters β = [β1, · · · , βK ]

⊤ is given by

f (x;β) =
1

B(β)

K∏
i=1

xβi−1
i , where (6)

B(β) =

∏K
i=1 Γ(βi)

Γ
(∑K

i=1 βi

) , (7)

and xi ∈ [0, 1],∀i ∈ {1, 2, · · · ,K }, subject to
∑K

i=1 xi = 1.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 14 / 31
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Definitions

Sampling from Dirichlet Distribution

Example

While sampling from the Beta distribution is available in numpy, Dirichlet
distributions are not. However, we do have access to the Gamma distribution. This
means to sample a random vector x = [x1, x2, . . . , xK ]

⊤ from the K -dimensional
Dirichlet distribution with parameters β = [β1, β2, . . . , βK ]

⊤, we draw K independent
samples from Gamma distribution and normalize to sum to 1.

Gamma(βi , 1) =
yβi−1

i e−yi

Γ(βi)
(8)

xi =
yi∑K

j=1 yj

(9)

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 15 / 31
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Definitions

Visualizing these Vectors

Figure 2: Small values of β = [0.0001, 0.0001]⊤ promote sparcity.

Figure 3: Large values of β = [1000, 1000]⊤ promote uniformity (1/N ).
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Definitions

Making Matrices from these Random Vectors

Definition (Beta/ Dirichlet Random Covariance Matrices[4])

Now that we are able to sample vectors in Rt from the Beta and Dirichlet distribution,
we can stack these vectors on top of each other N times to get an N × T data matrix
H. This makes Beta Random Matrices or Dirichlet Random Matrices. To observe the
spectrum, we construct the covariance matrix to make Beta Random Covariance
Matrices (BRCM) or Dirichlet Random Covariance Matrices (DRCM).

Figure 4: The DRCM is constructed by 1
10 AA⊤, where A is seen above.
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Spectrum

Spectrum of the Beta Random Matrices

Conjecture

The spectrum of the BRCM, for arbitrary β = [β1, β2]
⊤, is of Marčenko-Pastur type.

Definition (Sub-Gaussian variables)

A random variable X with µ = E[X ] < ∞ is sub-Gaussian if ∃σ > 0 such that

E[exp(λ(X − µ))] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R

Lemma (Marchal, Arbel, 2017[5])

The Beta(β, β) distribution is strictly sub-Gaussian.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 18 / 31
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Spectrum

Spectrum of the Beta Random Matrices (cont.)

Proof of Lemma.

First, observe that the jth moment of Beta(β1, β2) for a random variable X is given by:

E[X j ] =
(β1)j

(β1 + β2)j
, E[X ] =

β1

β1 + β2
,V[X ] =

β1β2

(β1 + β2)2(β1 + β2 + 1)

Now letting β1 = β2, σ
2(β) = V[Beta(β, β)] = 1/(4(2β + 1)). Also since X is symmetric

around 1
2 , then the even moments are non-zero.

E
[
exp

(
X − 1

2

)]
=

∞∑
j=0

E
[
(X − 1/2)2j

] 1
(2j)!

E

[(
X − 1

2

)2j
]

1
(2j)!

=
1

22j j!
(β)j

(2β)2j

≤ 1
22j j!

1
(2(2β + 1))j

=
σ2j(β)

2j j!
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Spectrum

More Results on the Spectrum of BRCM

Theorem (Vershynin, 2011(Thm 5.39)[6])

Let A be an N × n matrix are independent sub-gaussian isotropic random vectors in
Rn. Then for every t ≥ 0 with probability at least 1 − 2 exp

(
−ct 2

)
one has

√
N − C

√
n − t ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n + t . (10)

Remark

We can even extend this to non-isotropic distributions, which the Beta distribution is
since E[Beta(β1, β2)] =

1
N > 0.

Possible Proof Directions.

Since the Beta distribution is sub-Gaussian by the previous lemma [5] then by [6] we
know that the BRCM has limiting spectral distribution which follows the domain of
Marčenko-Pastur density with high probability.
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Spectrum

Spectrum of the Dirichlet Random Matrices

Conjecture

The spectrum of the DRCM is of Marčenko-Pastur type.

Theorem (Yaskov, 2016[7])

If (x⊤
p Apxp − tr{Ap)})/p

p−→ 0 as p → ∞ for all sequences of p × p complex matrices Ap

with uniformly bounded spectral norms ∥Ap∥, then the spectrum converges weakly to
Marčenko-Pastur with probability 1.
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Spectrum

Spectrum of the Dirichlet Random Matrices (cont.)

Proof.

We will use the Cauchy–Stieltjes transform method. By the Stieltjes continuity
theorem, it suffices to prove that sn(z) → s(z) a.s. ∀z ∈ C with Im(z) > 0, where sn(z)
and s(z) are the Stieltjes transforms of µ and µMP, respectively

sn(z) =
∫
R

µ(dλ)
λ− z

and s(z) =
∫
R

µMP(dλ)
λ− z

Since µ is isotropic, sn(z) = tr
(

n−1XX⊤ − zIp
)−1

/p. Now fix z ∈ C with Im(z) = v > 0,
then through a Martingale type argument, sn(z)− Esn(z) → 0 a.s.. Lastly through a
Sherman-Morrison-Woodbury argument we arrive at Esn(z) → s(z).
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Spectrum

Spectrum of the Dirichlet Random Matrices (cont.)

Possible Proof Direction.

By [7], we need to prove that for A, a Dirichlet Random Matrix, that the DRCM
C = A⊤A has bounded operator norm. Since Cij > 0,∈ R, then by Perron-Frobenius
we know that λmax ≤ maxi

∑
j Cij < ∞, so ∥C∥2 is finite, and then all induced norms

are bounded.
Next we need to show that, V[x⊤Cx/p] → 0. Consider x = 1⃗, then since each row is
rescaled to sum to 1, then we would have x⊤x = p. Since we are dividing by p, the
variance of any constance is 0, so by Theorem, we have DRCM are of
Marčenko-Pastur type.

M.T. Scott (Emory University) Dirichlet Random Matrices December 3, 2024 23 / 31
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Spectrum

Numerical Results in the Bulk

Figure 5: DRCM’s spectrum converge to Marčenko-Pastur with hand tuned σ.
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Spectrum

Numerical Results on the Edge

Figure 6: DRCM appears to have a Tracy-Widom like decay on the edge.
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Summary

In this talk, we have

• motivated compressed sensing from the Nyquist Sampling Theorem,

• learned about Wishart covariance matrices and their spectrum
(Marčenko-Pastur ),

• examimed the Beta and Dirichlet distribution, exploiting them to make RM, and

• conjectured Marčenko-Pastur spectrum from both classes, numerically verifying
it.
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Introduction Wishart Matrices and Marčenko-Pastur Distributions Beta and Dirichlet Random Matrices Conclusions References

Summary

In this talk, we have

• motivated compressed sensing from the Nyquist Sampling Theorem,

• learned about Wishart covariance matrices and their spectrum
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Future Directions

Theoretic Considerations:

• The Beta and Dirichlet matrices have E(xij) ̸= 0, so I am trying to find a fix for
these, either through a Y = W1/2X or reworking the proof.

• Use Markov style arguments and adjust the proof using [8, 9]

• Determine the point mass at x = 0.

Numerical Considerations:

• Even with proof that these converge to Marčenko-Pastur distributions, the exact
constants in the law aren’t known.

• I have hand tuned the σ parameter, but I would like to solve
σ = σ(q,β,dim(β), βi).

• Continue to compare different values of dim(β), (namely compare Beta and
2-Dirichlet)

• Let β change from entry to entry.
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