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Notation

• [3] is a great book, but it is universally agreed upon that the
notation can be confusing (n=2).

• Instead, we will be using more of the notation used in [4].
The main players are below:

• Hk is the full Hessian at the k th step.
• Bk is the approximation of the Hessian at the k th step.
• B−1

k is the approximation of the inverse Hessian at the k th

step.

M. Chung, private communication, Emory University, Atlanta, GA., 2023
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Newton’s Method for Minimization I

The question is to minimize f : Rd → R, where f ∈ C2 over the
entire domain, an unconstrained optimization problem.

min
x∈Rd

f (x)

We will Taylor expand this function

f (x + s) ≈ f (x) +∇f (x)>s +
1

2
s>Hf (x)s +O

(
s3
)

where Hf (x) is the Hessian matrix of second order partials of f .
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Newton’s Method for Minimization II

This function is minimized in s when

Hf (x)s = −∇f (x)

Recall the Hessian is the Jacobian of the gradient, so writing
g := ∇f (x), we get

Jg (x)s = −g(x),

which is a Newton step for g = ∇f (x) = 0. Essentially, Newton’s
method for optimization is a root finding algorithm for the
stationary points of a function.
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Just use Newton? That’s quasi-correct!

1 Pros:
1 Quadratic Convergence near the solution
2 H is SPD near the solution

2 Cons:
1 Assuming dense H, O

(
n2
)

scalar function evals, and

O
(
n3
)
flops per iteration

2 Requires second derivatives of f .

Enter quasi-Newton methods that work with Bk , an approximation
of H, the true Hessian!

1 Pros:
1 Doesn’t require second derivatives.
2 B is always SPD.
3 Require only one gradient evaluation.
4 Update the approximation and solve linear system in O

(
n2
)

2 Cons:
1 Superlinear convergence
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Enter BFGS!

Figure: The founders of the BFGS alogirthm. From left to right:
Broyden, Fletcher, Goldfarb, and Shanno.[1]
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Pseudocode for BFGS Implementation

Require:
x0 = initial guess,
B0 = initial Hessian approximation
tol = convergence requirement
while convergence requirement not met do

Solve Bksk = −∇f (xk) for sk
xk+1 ← xk + αksk
yk ← ∇f (xk+1)−∇f (xk)

Bk+1 ← Bk −
Bksks

>
k Bk

s>k Bksk
+

yky
>
k

y>k sk
k ← k + 1

end while

M.T. Scott (Emory) BFGS Algorithm October 17, 2023 9 / 23



Introduction BFGS Algorithm BFGS Examples Properties of BFGS Variations of BFGS

Pseudocode for BFGS Implementation (Inverse Problem)

Require:
x0 = initial guess,
B−10 = initial inverse Hessian approximation
tol = convergence requirement
while convergence requirement not met do

pk ← −B−1k ∇f (xk)
xk+1 ← xk + αkpk
sk ← xk+1 − xk
yk ← ∇f (xk+1)−∇f (xk)

B−1k+1 ←
(
I− sky

T
k

y>k sk

)
B−1k

(
I− yks

>
k

y>k sk

)
+

sks
>
k

y>k sk
k ← k + 1

end while
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Rank-2 updates

Recall that sk := xk+1 − xk , yk := ∇f (xk+1)−∇f (xk).

Definition (Secant Equation)

We require that Bk+1 satisfies Bk+1sk = yk , which is a
multidimensional secant equation. Similarly, we require
B−1k+1yk = sk as an inverse secant equation.

Definition (Curvature Condition)

For Bk+1 to be SPD, the curvature condition needs to be satisfied

s>k yk > 0.

coming from premultiplying the secant equation by s>k ,

s>k Bk+1sk = s>k yk > 0.
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Initial Hessian approximation

How do we choose the initial Hessian or initial inverse Hessian?

Theorem (Preservation of SPD structure over iterations)

If B−1k is SPD, then both updates will produce an SPD B−1k+1.

Proof.

Let z be a nonzero vector, then

z>B−1k+1z =

(
z−

yk
(
s>k z
)

y>k sk

)
B−1k

(
z−

yk
(
s>k z
)

y>k sk

)
+

(
z>sk

)2
y>k sk

≥ 0
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Initial Hessian approximations

What are some SPD matrices that are used in practice?
1 I

1 Easy way to start off.
2 First step is the vanilla steepest descent.

2 γI where γ ∈ R+

1 γ = δ‖g0‖−1

2 γk =
s>k−1yk−1

y>k−1yk−1

3 H, the true Hessian
1 Starts the algorithm off better.
2 Expensive to compute.

4 Something in between the two extremes like a finite difference
approximation of H.
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BFGS example[4]

Let
f (x) = 0.5x21 + 2.5x22 , with x0 = [5, 1]>

Clearly the gradient is given by

∇f (x) =

[
x1

5x2

]
Assume B0 = I, which is equivalent to the first step being the
steepest descent step, so

x1 = x0 + s0 =

[
5
1

]
+

[
−5
−5

]
=

[
0
−4

]
.

Exercise: Show that the approximate Hessian according to BFGS is

B1 =

[
0.667 0.333
0.333 4.667

]
.
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BFGS example, cont.

A new step is computed and the process continued. The resulting
sequence of iterates are shown below.

k x>k f (xk) ∇f (xk)>

1 5.000 1.000 15.000 5.000 5.000
2 0.000 -4.000 40.000 0.000 -20.000
3 -2.222 0.444 2.963 -2.222 2.222
4 0.816 0.082 0.350 0.816 0.408
5 -0.009 -0.015 0.001 -0.009 -0.077
6 -0.001 0.001 0.000 -0.001 0.005

M.T. Scott (Emory) BFGS Algorithm October 17, 2023 15 / 23



Introduction BFGS Algorithm BFGS Examples Properties of BFGS Variations of BFGS

BFGS example, cont.
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Figure: BFGS without linesearch converges superlinearly on 0.5x21 + 2.5x22 .
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Iterative Method Showdown (BFGS vs. SD vs. Newton)

• Comparing the three methods we know (and love) on the
Rosenbrock function, x0 = [−1.2, 1]>, with Wolfe conditions
(why?)

• [3] has iterates below with

• SD had 5264 iterations,
• BFGS had 34 iterations,
• Newton had 21 iterations.

Steepest Descent BFGS Newton

1.827e-04 1.70e-03 3.48e-02
1.826e-04 1.17e-03 1.44e-02
1.824e-04 1.34e-04 1.82e-04
1.823e-04 1.01e-06 1.17e-08
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The Showdown Continues
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Figure: SD maxed out at 500 iterations, BFGS had 29, and Newton 17.
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BFGS converges globally

Theorem (Global Convergence of BFGS,[3])

Let B0 be any symmetric positive definite initial matrix. Let x0 be
a starting point where

1 The objective function f is twice continuously differentiable.

2 The level set L = {x ∈ Rn|f (x) ≤ f (x0)} is convex, and there
exist positive constants m and M such that

m‖z‖2 ≤ z>∇2f (x)z ≤ M‖z‖2, ∀z ∈ Rn, x ∈ L

Then the sequence {xk} generated by the BFGS algorithm (with
tol = 0) converges to the minimizer x∗ of f .
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BFGS converges superlinearly

Theorem (Superlinear Convergence of BFGS,[3])

Suppose that f is twice continuously differentiable and that the
iterates generated by the BFGS algorithm, converges to a
minimizer x∗ at which the Hessian matrix H is Lipschitz
continuous at x∗, that is,

‖H(x)−H(x∗)‖ ≤ L‖x− x∗‖,∀x near x∗, L > 0.

Suppose also that
∞∑
k=1

‖xk − x∗‖ <∞

holds. Then xk converges to x∗ at a superlinear rate.
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What were we talking about? (Limited Memory BFGS)

• What happens if your problem is large scale, resulting in the
storage of a large dense B−1k ?

• Instead, we store a modified version of B−1k by storing some
vector pairs {si , yi} and doing inner products and vector sums.

• After the new iterate is computed, we discard the oldest
vector pair, assuming the curvature information it encodes is
not as valuable.
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L-BFGS Two-loop recursion

q← ∇fk
for i = k − 1 : −1 : k −m do

αi ← ρis
>
i q

q← q− αiyi
end for
r←

(
B−1k

)0
q

for i = k −m : k − 1 do
β ← ρiy

>
i r

r← r + si (αi − βi )
end for

return B−1k ∇fk = rk
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L-BFGS Implementation

Require:
x0 = initial guess,
m ∈ Z+,number of kept vector pairs (m = 3− 20 in practice)
k ← 0
while Not Converged do

Choose
(
B−1k

)0
, could be

〈sk−1,yk−1〉
〈yk−1,yk−1〉 I

Compute pk ← B−1k ∇fk = rk
xk+1 ← xk + αkpk . Wolfe-Powell Conditions
if k > m then

Delete {sk−m, yk−m}
sk ← xk+1 − xk
yk ← ∇fk+1 −∇fk

end if
k ← k + 1

end while
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