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1 Introduction

This document was prepared as a culmination of my notes and study materials for my
institution’s analysis qualifying examination. The topics presented below are based off of
what a first year math PhD student would learn in the graduate level Real and Complex
analysis sequence. However, each institution and professor highlights slightly different
topics so there might be some slight variation. I also claim no novelty in this document.
All of the theorems, lemmas, definitions, etc, should be cited from the standard analy-
sis books, and the subsequent proofs are the formulation presented from the respective
citation. The only thing that this document does is it condenses all of a standard real
and complex analysis course into one file for studying purposes. The notation, while at
times contradictory, is all true to the source from which it was taken. There are some
short comments interspersed between the theorems that are meant to serve as a slight
outline or transistion from one topic to another. Lastly, I am sure there are typos in this
document, and when one is found, it will be updated. Please feel free to make me aware
of any typos that you see.

2 Complex Analysis

2.1 Background Material

Definition 2.1 (Primative [3]). A function f has a primitive if there exists a function F
that is holomorphic and whose derivative is precisely f .

Definition 2.2 (Conformal Equivalence [2]). We call two regions Ω1 and Ω2 conformal
equivalence if there exists a ϕ ∈ H(Ω1) such that ϕ is one-to-one in Ω1 and such that
ϕ(Ω1) = Ω2, i.e., if there exists a conformal one-to-one mapping of Ω1 onto Ω2. Under
these conditions, the inverse of ϕ is holomorphic in Ω2, and hence is a conformal mapping
of Ω2 onto Ω1.

2.2 Core Results

Theorem 2.1 (Goursat’s Theorem [3]). If Ω is an open set in C, and T ⊂ Ω a triangle
whose interior is also contained in Ω, then∫

T

f(z) dz = 0

whenever f is holomorphic in Ω.

Theorem 2.2 (Cauchy’s Theorem for a Triangle [2]). Suppose ∆ is a closed triangle in
a plane open set Ω, p ∈ Ω, and f ∈ H(Ω \ {p}). Then∫

∂∆

f(z) dz = 0
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Proof. We assume first that p 6∈ ∆. Let a, b, and c be the vertices of ∆, and let a′, b′, c′

be the midpoints of [b, c], [c, a], and [a, b], respectively, and consider the four triangles

{a, c′, b, }, {b, a′, c′}, {c, b′, a′}, {a′, b′, c′}.

If J is the value of the integral
∫
∂∆
f dz, it follows that

J =
4∑
j=1

∫
∂∆j

f(z) dz .

The absolute value of at least one of the integrals on the right hand side is therefore at
least |J/4|. Call the corresponding triangle ∆1, repeat the argument with ∆1 in place of
∆, and so forth. This generates a sequence of triangles ∆n such that ∆ ⊃ ∆1 ⊃ ∆2 ⊃ · · · ,
such that the length of ∂∆n is 2−nL if L is the length of ∂∆, and such that

|J | ≤ 4n
∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ (n = 1, 2, 3, ...).

There is a (unique) point z0 wich the triangles ∆n have in common. Since ∆ is compact,
z0 ∈ ∆, so f is differentiable at z0. Let ε > 0. be given. There exists an r > 0 such that

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ ε|z − z0|

whenever |z − z0| < r, and there exists an n such that |z − z0| < r for all z ∈ ∆n. For
this n we also have |z − z0| ≤ 2−nL for all z ∈ ∆n. By the corollary∫

∂∆n

f(z) dz =

∫
∂∆n

[f(z)− f(z0)− f ′(z0)(z − z0)] dz ,

so that way we can combine with the other intequality implies∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ ≤ ε(2−nL)2,

and now that shows tht |J | ≤ εL2. Hence J = 0 if p 6∈ ∆. Assume next that p is a vertex
of ∆, say p = a. If a, b, and c are colinear, then it is trivial for any continuous f by the
FTC. If not, choose points x ∈ [a, b] and y ∈ [a, c], both close to a, and observe that
the integral of f over ∂∆ is the sum of the integrals over the boundaries of the triangles
{a, x, y}, {x, b, y}, and p. Hence the integral over ∂∆ is the sum of the integrals over
[a, x], [x, y], and [y, a], and since these intervals can be made arbitrarily short and f is
bounded on ∆, we again obtain that the integral equals zero.
Finally, if p is an arbitrary point of ∆, apply the preceding result to {a, b, p}, {b, c, p}, and
{c, a, p} to complete the proof.

Remark 2.1 (Historical Aside). Why do the same theorem have different names between
[2] and [3]? The answer is because Cauchy originally published his theorem in 1825,
under the additional assumption that f ′ is continuous. However, Goursat showed that
this assumption was redundant, and stated the theorem in the present form.
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Theorem 2.3 (Cauchy’s Theorem in a Convex Set[2]). Supposed Ω is a convex open set,
p ∈ Ω, f is continuous on Ω, and f ∈ H(Ω \ {p}). Then f = F ′ for some F ∈ H(Ω).
Hence ∫

γ

f(z) dz = 0

for every closed path γ in Ω.

Proof. Fix a ∈ Ω. Since Ω is convex, Ω contains the straight line interval from a to z for
every z ∈ Ω, so we can define

F (z) =

∫
[a,z]

f(ξ) dξ (z ∈ Ω).

For any z and z0 ∈ Ω, the triangle with vertices at a, z0, and z lies in Ω; hence F (z)−F (z0)
is the integral of f over [z0, z], by Cauchy’s Theorem on a triangle. Fixing z0, we thus
obtain,

F (z)− F (z0)

z − z0

− f ′(z0) =
1

z − z0

∫
[z0,z]

[f(ξ)− f(z0) dξ] ,

if z 6= z0. Given ε > 0, the continuity of f at z0 shows that there is a δ > 0 such that
|f(ξ) − f(z0)|, ε if |ξ − z0| < δ; hence the absolute value of the F (z)−F (z0)

z−z0 < ε as soon as
|z − z0| < δ. This proves that f = F ′. In particular, F ∈ H(Ω). Now, we see that letting
[α, β] be the parameter interval of γ, then the fundamental theorem of calculus shows
that ∫

γ

f(z) dz =

∫
γ

F ′(z) dz

=

∫ β

α

F ′(γ(t))γ′(t) dt

= F (γ(β))− F (γ(α))

= 0

since γ(β) = γ(α).

Theorem 2.4 (Cauchy Integral Formula/ Cauchy Theorem[2]). Suppose f ∈ H(Ω), where
Ω is an arbitrary open set in the complex plane. If Γ is a cycle in Ω that satisfies

IndΓ(α) = 0 for every α not in Ω,

then

f(z) · IndΓ(z) =
1

2πi

∫
Γ

f(w)

w − z
dw for z ∈ Ω \ Γ∗

and ∫
Γ

f(z) dz = 0.

If Γ0 and Γ1 are cycles in Ω such that

IndΓ0(α) = IndΓ1(α) for every α not in Ω,

then ∫
Γ0

f(z) dz =

∫
Γ1

f(z) dz .
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Proof. The function g defined in Ω× Ω by

g(z, w) =

{
f(w)−f(z)

w−z if w 6= z,

f ′(z) if w = z,

is continuous in Ω× Ω. Hence we can define

h(z) =
1

2πi

∫
Γ

g(z, w) dw (z ∈ Ω).

For z ∈ Ω \ Γ∗, the Cauchy formula (2.4) is clearly equivalent to the assertion that

h(z) = 0.

To prove that, let us prove that h ∈ H(Ω). Note that g is uniformly continuous on every
compact subset of Ω × Ω. If z ∈ Ω, zn ∈ Ω, zn → z, it follows that g(zn, w) → g(z, w)
uniformly for w ∈ Γ∗ (a compact subset of Ω). Hence h(zn) → h(z). This proves that h
is continuous in Ω, Let ∆ be a closed triangle in Ω. Then∫

∂∆

h(z) dz =
1

2πi

∫
Γ

(∫
∂∆

g(z, w) dz

)
dw .

For each w ∈ Ω, z → g(z, w) is holomorphic in Ω. (The singularity at z = w is removable.)
The inner integral on the right side is therefore 0 for every w ∈ Γ∗. Morera’s Theorem
(defined in Theorem 2.7) shows now that h ∈ H(Ω).
Next, we let Ω1 be the set of all complex numbers z for which IndΓ(z) = 0, and we define

h1(z) =
1

2πi

∫
Γ

f(w)

w − z
dw (z ∈ Ω1).

If z ∈ Ω ∩ Ω1, the definition of Ω1 makes it clear that h1(z) = h(z). Hence there is a
function ϕ ∈ H(Ω ∪ Ω1) whose restriction to Ω is h and whose restriction to Ω1 is h1.
By our hypothesis that IndΓ(α) = 0, for every α not in Ω,

Theorem 2.5 (Analyticity of holomorphic functions[2]). For every open set Ω in the
plane, every f ∈ H(Ω) is representable by a power series expansion.

Proof. Suppose f ∈ H(Ω) and D(a,R) ⊂ Ω. If γ is a positively oriented circle with center
at a and radius r < R, the convexity of D(a,R) allows us to apply Cauchy’s Theorem on
a convex set; by the fact that Indγ(z) = 1,∀z ∈ D(a, r), we obtain

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ (z ∈ D(a, r)).

But now we can apply a theorem that says if the integral is of the above form it is
representable by a power series, namely let X = [0, 2π], ϕ = γ, and dµ(t) = f(γ(t))γ′(t) dt,
and we conclude that there is a sequence {cn} such that

f(z) =
∞∑
n=0

cn(z − a)n (z ∈ D(a, r)).
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Remark 2.2 (f is holomorphic iff f is representable by power series). While the above
proof just showed that if f is holomorphic, then it is representable by a power series.
However, [2] already proved the converse, namely if f is representable by power series,
then it is holomorphic. Similarly, if f is holomorphic, then so is f (n), or the nth derivative.

Theorem 2.6 (Liouville’s Theorem [2]). Every bounded entire finction is constant.

Proof. Recall the definition of “entire” is any function that is holomorphic over the entire
complex plane. Suppose f is entire, |f(z)| < M for all z, and f(z) =

∑
cnz

n for all z.
We know by a special case of Parseval’s formula that

∞∑
n=0

|cn|2r2n =
1

2π

∫ π

−π
|f(a+ reiθ)|2 dθ .

This means that we have
∞∑
n=0

|cn|2r2n ≤M2

for all r, which is possible only if cn = 0 for all n ≥ 0.

We saw by Cauchy’s Theorem for a triangle that if f ∈ H(Ω \ {p}) then∫
∂∆

f(z) dz = 0,

but it turns out that this also works the other way

Theorem 2.7 (Morera’s Theorem [2]). Suppose that f is a continuous complex function
in an open set Ω such that ∫

∂∆

f(z) dz = 0

for every closed triangle ∆ ⊂ Ω. Then f ∈ H(Ω)

Proof. Let V be a convex open set in Ω. Using Cauchy’s formula for a convex set, we can
construct an F ∈ H(V ) such that F ′ = f . Since derivatives of holomorphic functions are
holomorphic, we have that f ∈ H(V ), for every convex open V ⊂ Ω, hence f ∈ H(Ω).

Theorem 2.8 (Zeros of holomorphic functions[2]). Suppose Ω is a region, f ∈ H(Ω), and

Z(f) = {a ∈ Ω : f(a) = 0}.

Then either Z(f) = Ω, or Z(f) has no limit points in Ω. In the latter case there corre-
sponds to each a ∈ Z(f) a unique positive integer m = m(a) such that

f(z) = (z − a)mg(z) (z ∈ Ω),

where g ∈ H(Ω) and g(a) 6= 0; furthermore, Z(f) is at most countable.

Proof. Let A be the set of all limit points of Z(f) in Ω. Since f is continuous, A ⊂ Z(f).
Fix a ∈ Z(f), and choose r > 0 so that D(a, r) ⊂ Ω. Since f is holomorphic, we can
write it as a power series, namely

f(z) =
∞∑
n=0

cn(z − a)n (z ∈ D(a, r)).

5
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There are now two possibilities. Either all cn are 0, in which case D(a, r) ⊂ A and a is an
interior point of A, or there is a smallest integer m [necessarily positive, since f(a) = 0]
such that cm 6= 0. In that case, define

g(z) =

{
(z − a)−mf(z) (z ∈ Ω \ {a})
cm (z = a).

Thus f(z) = (z−a)mg(z). It is clear that g ∈ H(Ω\{a}). But since f can be representable
by a power series, this implies

g(z) =
∞∑
k=0

cm+k(z − a)k (z ∈ D(a, r)).

Hence g ∈ H(D(a, r)), so g ∈ H(Ω).
Moreover, g(a) 6= 0, and the continuity of g shows that there is a neighborhood of a in
which g has no zero. Thus a is an isolated point of Z(f).
If a ∈ A, the first case must therefore occur. So A is open. If B = Ω \ A, it is clear from
the definition of A as a set of limit points that B is open. This Ω is the union of the
disjoint open sets A and B. Since Ω is connected, we have either A = Ω, in which case
Z(f) = Ω, or A = ∅. In the latter case, Z(f) has at most finitely many points in each
compact subset of Ω, and since Ω is σ-finite, Z(f) is at most countable.

Theorem 2.9 (Classification of isolated singularties [2]). If a ∈ Ω and f ∈ H(Ω \ {a}),
then one of the three following cases must occur:

1. f has a removable singularity at a.

2. There are complex numbers c1, ..., cm, where m is a positive integer and cm 6= 0,
such that

f(z)−
m∑
k=1

ck
(z − a)k

has a removable singularity at a.

3. If r > 0 and D(a, r) ⊂ Ω, then f(D′(a, r)) is dense in the plane.

In case (b), f is said to have a pole of order m at a. The function

m∑
k=1

ck(z − a)−k,

a polynomial in (z−a)−1, is called the principal part of f at a. It is clear in this situation
that |f(z)| → ∞ as z → a. In case (c), f is said to have an essential singularity at a. A
statement equivalent to (c) is that to each complex number w there corresponds a sequence
{zn} such that zn → a and f(zn)→ w as n→∞.

Proof. Suppose (c) fails. Then there exist r > 0, δ > 0, and a complex number w such
that |f(z)− w| > δ in D′(a, r). Let us write D for D(a, r). and D′ for D′(a, r). Define

g(z) =
1

f(z)− w
(z ∈ D′).

6



Qualifying Exam: Real and Complex Analysis Scott

Then g ∈ H(D′) and |g| < 1/δ. Then since g is bounded in D′ and holomorphic every-
where else, then g has a removable singularity, and g extends to a holomorphic function
in D.
If g(a) 6= 0, then that shows f is bounded in D′(a, ρ) for some ρ > 0. Hence, (a) holds,
by the previous theorem.
If g has a zero of order m ≥ 1, the zeros of holomorphic functions theorem shows that

g(z) = (z − a)mg1(z) (z ∈ D),

where g1 ∈ H(D) and g1(a) 6= 0. Also g1 has no zero in D′, by (1). Put h = 1/g1 in D.
Then h ∈ H(D), h has no zeros in D, and

f(z)− w = (z − a)−mh(z) (z ∈ D′).

But h has an expansion of the form

h(z) =
∞∑
n=0

bn(z − a)n (z ∈ D),

with b0 6= 0. Now writing f(z) − w that way shows that (b) holds, with ck = bm−k, k =
1, ...,m.

Theorem 2.10 (Residue Theorem [2]). Suppose f is a meromorphic function in Ω. Let
A be the set of points in Ω at which f has poles. If Γ is a cycle in Ω \ A such that

IndΓ(α) = 0 for all α 6∈ Ω,

then
1

2πi

∫
Γ

f(z) dz =
∑
a∈A

Res(f ; a)IndΓ(a).

Proof. Let B = {a ∈ A : IndΓ(a) 6= 0}. Let W be the complement of Γ∗. Then IndΓ(z)
is constant in each component V of W . If V is unbounded, or if V intersects ΩC , Then
IndΓ(z) = 0 for every z ∈ V . Since A has no limit point in Ω, we conclude that B is a
finite set.
The sum of residues, though formally infinite, is therefore actually finite.
Let a1, ..., an be the points of B, let Q1, ..., Qn be the principal parts of f at a1, ..., an, and
put g = f − (Q1 + · · · + Qn). (If B = ∅, a possibily is not excluded, then g = f .) Put
Ω0 = Ω \ (A \B). Since g has removable singularities at a1, ..., an, then Cauchy’s theorem
(Theorem 2.4) applied to the function f and the open set Ω0, shows that∫

Γ

g(z) dz = 0.

Hence
1

2πi

∫
Γ

f(z) dz =
n∑
i=1

1

2πi

∫
Γ

Qk(z) dz =
n∑
k=1

Res(Qk; ak)IndΓ(ak),

and since f and Qk have the same residue at ak, we obtain the sum.

Theorem 2.11 (Rouche’s Theorem [2]). Suppose γ is a closed path in a region Ω, such
that Indγ(α) = 0 for every α not in Ω. Suppose also that Indγ(α) = 0 or 1 for every
α ∈ Ω \ γ∗, and let Ω1 be the set of all α with Indγ(α) = 1.
For any f ∈ H(Ω), let Nf be the number of zeros in f in Ω1, counted according to their
multiplicites.

7
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1. If f ∈ H(Ω) and f has no zeros on γ∗ then

Nf =
1

2πi

∫
γ

f ′(z)

f(z)
dz = IndΓ(0)

where Γ = f ◦ γ.

2. If also g ∈ H(Ω) and

|f(z)− g(z)| < |f(z)| , for all z ∈ γ∗

then Ng = Nf .

Note: Part (2) is called Roche’s Theorem. It says that two holomorphic functions have
the same number of zeros in Ω1, if they are close together on the boundary of Ω1, as
specified by the inequality above.

Proof. Put ϕ = f ′/f , a meromorphic function in Ω. If a ∈ Ω and f has a zero of order
m = m(a) at a, then f(z) = (z − a)mh(z), where h and 1/h are holomorphic in some
neighborhood V of a. In V \ {a},

ϕ =
f ′

f
=

m

z − a
+
h′

h
.

Thus
Res(ϕ; a) = m(a).

Let A = {a ∈ Ω1 : f(a) = 0}. If our assumptions about the index of γ are combined with
the residue theorem one obtains

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈A

Res(ϕ;m) =
∑
a∈A

m(a) = Nf .

This proves the first half of the proof of (1). The other half is a matter of direct compu-
tation.

IndΓ(0) =
1

2πi

∫
Γ

dz

z
=

1

2πi

∫ 2π

0

Γ′(s)

Γ(s)
ds

=
1

2πi

∫ 2π

0

f ′(γ(s))

f(γ(s))
γ′(s) ds =

1

2πi

∫
γ

f ′(z)

f(z)
dz .

The parameter interval of γ was here taken to be [0, 2π].
Next, Rouche’s Theorem shows that g has no zeros on γ∗. Hence, we can apply (1) with
g in place of f . Put Γ0 = g ◦ γ. Then it follows from (1), (2), and the homotopy equality
that

Ng = IndΓ0(0) = IndΓ(0) = Nf .

This same statement is presented mathematically equivalently, but also slightly differ-
ent notation, so for completeness, we will present the alternative statement of Rouche’s
Theorem.

8
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Theorem 2.12 (Rouche’s Theorem [3]). Suppose that f and g are holomorphic in an
open set containing a circle C and its interior. If

|f(z)| > |g(z)| for all z ∈ C,

then f and f + g have the same number of zeros inside the circle C.

Theorem 2.13 (Open Mapping Theorem [3]). If f is holomorphic and nonconstant in a
region Ω, then f is open.

Proof. Let w0 belong to the image of f , say w0 = f(z0). We most prove that all points w
near w0 also belong to the image of f .
Define g(z) = f(z)− w and write

g(z) = (f(z)− w0) + (w0 − w)

= F (z) +G(z).

Now choose δ > 0 such that the disc |z − z0| ≤ δ is contained in Ω, and f(z) = ω0 on the
circle |z − z0| = δ. We then select ε > 0 so that we have |f(z) − w0| ≥ ε on the circle
|z − z0| = δ. Now if |w − w0| < ε, we have |F (z)| > |G(z)| on the circle |z − z0| = δ, and
by Rouche’s theorem, we conclude that g = F +G has a zero inside the circle since F has
one.

Theorem 2.14 (Maximum Modulus Theorem [3]). If f is a nonconstant holomorphic
function on a region Ω, then f cannot attain a maximum in Ω.

Proof. Suppose that f did attain a maximum at z0. Since f is holomorphic it is an open
mapping, and therefore, if D ⊂ Ω is a small disc centered at z0, its image f(D) is open
and contains f(z0). This proves that there are points z ∈ D such that |f(z)| > |f(z0)|, a
contradiction.

Theorem 2.15 (Schwarz Lemma [2]). Suppose f ∈ H∞ (the space of all bounded holo-
morphic functions in U), ‖f‖∞ ≤ 1, and f(0) = 0. Then

|f(z)| ≤ |z| (z ∈ U) (1)

|f ′(0)| ≤ 1; (2)

if equality holds in 1 for one z ∈ U \ {0}, or if equality holds in 2, then f(z) = λz, where
λ is a constant, λ| = 1, which is a rotation.

Remark 2.3 (Geometric Applications of Schwarz Lemma[2]). The hypothesis is that f
is a holomorphic mapping of U into U which keeps the origin fixed; part of the conclusion
is that either f is a rotation or f moves each z ∈ U \ {0} closer to the origin that it was.

Proof. Since f(0) = 0, then f(z)/z has a removable singularity at z = 0. Hence there
exists g ∈ H(U) such that f(z) = zg(z). If z ∈ U and |z| < r < 1. then

|g(z)| ≤ max
θ

|f(reiθ)|
r

≤ 1

r
.

Letting r → 1, we see that |g(z)| ≤ 1 at every z ∈ U . This gives (1). Since f ′(0) = g(0),
(2) follows. If |g(z)| = 1 for some z ∈ U , then g is constant, by another application of the
maximum modulus principle.

9
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2.3 More Technical Theorems

Theorem 2.16 (Weierstrauss factorization [2]). Let f be an entire function, supposed
f(0) 6= 0, and let z1, z2, z3, ... be the zeros of f , listed according to their multiplicities.
Then there exists an entire function g and a sequence {pn} of nonnegative integers, such
that

f(z) = eg(z)
∞∏
n=1

Epn

(
z

zn

)
,

where E0(z) = 1− z, and for p = 1, 2, 3, ...

Ep(z) = (1− z) exp

(
z +

z2

2
+ · · ·+ zp

p

)
are Weierstrauss’s elementary factors. Note: If f has a zero of order k at z = 0, the
preceding applies to f(z)/zk. The factorization is not unique; a unique factorization can
be associated with those f whose zeros satisfy the condition required for the convergence
of a canonical product.

Remark 2.4 (Comparing Weierstrauss and Hadamard [3]). The following factorization
of Hadamard refined this result by showing that in the case of functions of finite order, the
degree of the canonical factors can be taken to be constant, and g is then a polynomial.

Theorem 2.17 (Hadamard Factorization [3]). Supposed f is entire and has growth order
ρ0. Let k be the integer so that k ≤ ρ0 < k+ 1. If a1, a2, ... denote the (non-zero) zeros of
f , then

f(z) = eP (z)zm
∞∏
n=1

Ek

(
z

an

)
,

where P is a polynomial of degree ≤ k, and m is the order of the zero of f at z = 0.

Theorem 2.18 (Riemann Mapping Theorem [2]). Every simply connected region Ω in
the plane (other than the plane itself) is conformally equivalent to the open unit disc U .
Note: The case of the plane clearly has to be excluded, by Liouville’s theorem. Thus
the plane is not conformally equivalent to U , although the two regions are homeomorphic.
The only property of simply connected regions which will be used in the proof is that every
holomorphic function which has no zero in such a region has a holomorphic square root
there.

2.4 Techniques

3 Real Analysis

3.1 Background Material

Definition 3.1 (Dense[1]). A set E ⊆ X is dense in X if E = X.

Definition 3.2 (Limsup and Liminf of Sets[1]). If {Ek}k∈N is a sequence of subsets of
Rd, then we define

lim sup
k→∞

Ek =
∞⋂
j=1

(
∞⋃
k=j

Ek

)
and lim inf

k→∞
Ek =

∞⋃
j=1

(
∞⋂
k=j

Ek

)
.

10
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Definition 3.3 (Gδ-sets and Fσ-set [1]).

1. A set H ⊆ Rd is a Gδ-set if there exist countably many open sets Uk sith that
H = ∩Uk.

2. A set H ⊆ Rd is a Fσ-set if there exist countably many closed sets Fk such that
H = ∪Fk.

More tersely, [2] defines Gδ-sets and Fσ-sets as “all countable intersections of open sets”
and “all countable unions of closed sets”, respectively.

Remark 3.1. Both [1, 2] explain the historical rationale for these names, which is included
to help solidify the difference for studying. The notation is due to Hausdorff. The letters
F and G were used for closed and open sets, respectively, since F comes from the French
fermé(closed) and G comes from the German Gebiet (neighborhood, open set). The σ
refers to union (Summe), δ to intersection (Durchschnitt).

Example 3.1 (Clopen sets are both Gδ-sets and Fσ-sets [1]). The half open interval [a, b)
is neither an open nor a closed subset of R, but it is both a Gδ-set and an Fσ-set because
we can write it as

∞⋂
k=1

(
a− 1

k
, b

)
= [a, b) =

∞⋃
k=1

[
a, b− 1

k

]
Definition 3.4 (Topology [1]). The topology, τ of X, is the set of all open subsets of X.

Using logic of set theory, we can easily show that ∅ ∈ τ , as the null set is open. Addition-
ally, X ⊆ X, so it must be open, i.e. X ∈ τ . Lastly, we know that a finite intersection of
open sets is open, and the union of infinitely many open sets is still open. In other words,
a topology is closed under unions, finite intersections, contains the whole set, the null set,
and every open set in between. This is further solidified in Rudin’s definition.

Definition 3.5 (Topology [2]). A collection τ of subsets of a set X is said to be a topology
in X if τ has the following three properties:

1. ∅ ∈ τ and X ∈ τ .

2. If Vi ∈ τ for i = 1, · · · , n, then V1 ∩ V2 ∩ · · · ∩ Vn ∈ τ .

3. If {Vα} is an arbitrary collection of members of τ (finite, countable, or uncountable),
then ∪αVα ∈ τ .

Definition 3.6 (Topological Space [2]). If τ is a topology in X, then X is called a
topological space, and members of τ are called open sets in X.

Definition 3.7 (Continuous [2]). Finally, if X and Y are topological spaces and if f is a
mapping of X into Y , then f is said to be continuous provided that f−1(V ) is an open
set in X for every open set V in Y .

Definition 3.8 (Vector Space).

11
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3.2 Key Definitions

Definition 3.9 (Outer Lebesgue Measure [1]). The exterior Lebesgue measure (or the
outer Lebesgue measure) of a set E ⊆ Rd is

|E|e := inf

{∑
k

vol(Qk)

}
,

where the infimum is taken over all countable collections of boxes {Qk} such that E ⊆
∪Qk.

Definition 3.10 (Lebesgue Measure [1]). A set E ⊆ Rd is Lebesgue measurable, or simply
measurable for short, if

∀ε > 0, ∃ open U ⊇ E such that |U \ E|e ≤ ε

From this definition it is easy to define an alternative definition of Lebesgue measure that
instead of open sets that contain the set of interest, we have closed sets that are contained
in the set of interest.

Lemma 3.1 (Alternative Defintion of Lebesgue Measure[1]). A set E ⊂ Rd is Lebesgue
measurable if and only if for each ε > 0, there exists a closed set F ⊂ E such that
|E \ F |e < ε.

Proof. E is measurable iff EC = Rd\E is measurable iff there exists and open set U ⊃ EC

such that |U\EC | < ε iff F = UC , F is closed and satisfies E\F = U\EC iff |E\F | < ε.

Definition 3.11 (σ-algebra [1]). Let X be a set, and let Σ be a family of subsets of X
(in other words, Σ ⊆ P(X), the power set of X). If

1. Σ is nonempty,

2. Σ is closed under complements,

3. Σ is closed under countable unions,

then Σ is called a σ-algebra of subsets of X.

Rudin similarly defines σ-algebras as:

Definition 3.12 (σ-algebra [2]). A collection M of subsets of a set X is said to be a
σ-algebra in X if M has the following properties:

1. X ∈M

2. If A ∈M, then AC ∈M, where AC is the complement of A relative to X.

3. If A = ∪∞n=1An and if An ∈M for n = 1, 2, 3, ..., then A ∈M.

Then [2] immediately uses this definition to define measurable sets, measurable spaces,
and measurable functions; something [1] does at the end to summarize all of the types of
sets that he proved are measurable.

Definition 3.13 (Measurable Space, Measurable Sets [2]). If M is a σ-algebra in X, then
X is called a measurable space, and the members of M are called the measurable sets in
X.

12
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Definition 3.14 (Measurable Functions [2]). IfX is a measurable space, Y is a topological
space, and f is a mapping of X into Y , then f is said to be measurable provided that
f−1(V ) is a measurable set in X for every open set V in Y .

Heil similarly defines a Lebesgue measurable function as such:

Definition 3.15 (Extended Real-Valued Measurable Functions [1]). Let E ⊆ Rd and
f : E → [−∞,∞] be given. We say that f is Lebesgue measurable function on E, or
simply a measuralbe function for short, if

{f > a} = f−1(a,∞])

is a measurable subset of Rd for each number a ∈ R.

Rudin has additional comments to the last definitions, which states ∅ = XC , so since
X ∈M then XC = ∅ ∈M. Also we can set An+1 = An+2 = · · · = ∅, so given Ai ∈M for
i = 1, ..., n, then ∪ni=1Ai ∈M. Additionally, since

∞⋂
n=1

An =

(
∞⋃
n=1

ACn

)C

,

M is closed under under the formation of countable (and also finite) intersections. Lastly,
assuming A,B ∈M, then A−B := A \B := A ∩BC ∈M.

Remark 3.2 (Putting the σ in σ-algebra [2, 4]). The prefix σ refers to the fact that
in 3.11 and 3.12, if we restrict it to finite unions only (which then allows us to include
finite intersections), then we have what is called an algebra, which is still closed under
complements and finite unions. This means that algebras are a proper subset of σ-
algebras.

A less terse and more systematic discussion about measurable sets is provided by Heil.

Notation 3.1 (Measurable set [1]). The collection of all Lebesgue measurable subsets of
Rd will be denoted by

L = L(Rd) = {E ⊆ Rd : E is Lebesgue measurable},

but this doesn’t tell us what measurable sets can look like.

Lemma 3.2 (Open Sets are Measurable [1]). If U ⊆ Rd is open, then U is Lebesgue
measurable, and therefore U ∈ L.

Lemma 3.3 (Null Sets are Measurable [1]). If Z ⊆ Rd and |Z|e = |Z| = 0, then

Theorem 3.4 (Closure Under Countable Unions [1]). If E1, E2, · · · are all measurable
subsets of Rd, then their union E = ∪Ek is also measureable, and

|E| ≤
∞∑
k=1

|Ek|

Corollary 3.4.1 (Boxes are Measurable [1]). Every box, Q in Rd is a Lebesgue measurable
set as it can be decomposed into the union of the interior Q◦, which is open, and the
boundary, ∂Q, which has measure zero.

13
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Theorem 3.5 (Compact Sets are Measurable [1]). Every compact subset of Rd is Lebesgue
measurable.

Corollary 3.5.1 (Closed Sets are Measurable [1]). Every closed subset of Rd is Lebesgue
measurable. This is because we can write every closed set, E as a countable union of
compact sets, Fk.

Theorem 3.6 (Closure under Complements [1]). If E ⊆ Rd is Lebesgue measurable, then
so is EC := Rd \ E.

Corollary 3.6.1 (Closure under Countable Intersections [1]). If the sets E1, E2, · · · ⊆ Rd

are each Lebesgue measurable, then so is E = ∩Ek. This is because ∪EC
k = ∩ (Ek)

C.

Corollary 3.6.2 (Closure under Relative Complements [1]). If A and B are Lebesgue
measurable subsets of Rd, then so is A \B := A ∩BC.

Definition 3.16 (Borel Set [1]). Let U = {U ⊆ Rd : U is open}. be the collection of all
open subsets of Rd, or a topology of Rd. Let B = Σ(U) be the σ-algebra generated by U .
The elements of B are called Borel subsets of Rd, and B is the Borel σ-algebra on Rd.

Corollary 3.6.3 (Borel Measurable Sets [1]).

1. B contains every open set, closed set, Gδ-set, Fσ-set, Gδσ-set, Fσδ-set, and so forth.

2. B ⊆ L, or every element of B is a Lebesgue measurable set.

3. And if E ⊆ Rd is Lebesgue measurable, then E = B \ Z where B ∈ B, |Z| = 0, or
every Lebesgue measurable set differs from a Borel set by at most a set of measure
zero.

4. There do exist Lebesgue measurable sets that are not Borel sets such as g−1(N),
where g(x) = φ(x) + x, φ(x) is the Cantor-Lebesgue function, and N is the con-
structed nonmeasurable set.

Measure is probably the most important concept of integration theory, so it is super
important that we understand this in the concrete sense of Lebesgue or Borel Measure,
but also in the abstract sense. The following definitions will help us.

Definition 3.17 (Measure Space, Measure [4]). A measure space consists of a set X
equipped with two fundamental objects:

1. a σ-algebra M of “measurable” sets, which is a non-empty collection of subsets of
X closed under complements and countable unions and intersections.

2. A measure µ : M → [0,∞] with the following defining property: if E1, E2, ... is a
countable family of disjoint sets in M, then

µ

(
∞⋃
n=1

En

)
=
∞∑
n=1

µ(En)

Similarly, [2] defines positive measure as

14
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Definition 3.18 (Positive Measure [2]). A positive measure is a function µ, defined on a
σ-aglebra M, whose range is in [0,∞] and which is countably additive. This means that
if {Ai} is a disjoint countable collection of members of M, then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai)

To avoid trivalities, we shall also assume that µ(A) <∞ for at least one A ∈M.

Definition 3.19 (Measure Space [2]). A measure space is a measurable space which has
a positive measure defined on the σ-algebra of its measureable sets.

Definition 3.20 (Complex Measure [2]). A complex measure is a complex-valued count-
ably additive function defined on a σ-algebra.

Now that we have defined what an abstract measure is, we should next discuss properties:

Theorem 3.7 (Properties of a Positive Measure [2]). Let µ be a positive measure on a
σ-algebra M. Then

1. µ(∅) = 0

2. µ(A1 ∪ A2 ∪ · · · ∪ An) = µ(A1) + µ(A2) + · · ·+ µ(An) (finite additivity)

3. A ⊆ B imples µ(A) ≤ µ(B) if A ∈M, B ∈M. (monotonicity)

4. µ(An)→ µ(A) as n→∞ if A = ∪∞n=1An, An ∈M, and

A1 ⊆ A2 ⊆ A3 ⊆ · · · . (continuity from below)

5. µ(An)→ µ(A) as n→∞ if A = ∩∞n=1An, An ∈M, and

A1 ⊇ A2 ⊇ A3 ⊇ · · · (continuity from above)

and µ(A1) is finite.

The last two concepts are presented slightly differently in [1] because it included mono-
tonicity in there as well. For completeness, it is also presented here

Theorem 3.8 (Continuity from Below[1]). If E1, E2, ... are measurable subsets of Rd such
that E1 ⊆ E2 ⊆ · · · , then |E1| ≤ |E2| ≤ · · · and∣∣∣∣∣

∞⋃
k=1

Ek

∣∣∣∣∣ = lim
k→∞
|Ek|.

Theorem 3.9 (Continuity from Above[1]). If E1 ⊇ E2 ⊇ · · · are measurable subsets of
Rd and |Ek| <∞ for some k, then |E1| ≥ |E2| ≥ · · · and∣∣∣∣∣

∞⋂
k=1

Ek

∣∣∣∣∣ = lim
k→∞
|Ek|.

The continuity from above presented in [1] becomes the one presented in [2] if you define
mink∈NEk : |Ek| <∞ := A1.
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Theorem 3.10 (Cartesian Products [1]). If E ⊆ Rm and F ⊆ Rn are Lebesgue measurable
sets, then E × F ⊆ Rm+n is a Lebesgue measurable subset of Rm+n, and

|E × F | = |E||F |.

Now that we have defined properties of an abstract measure, let’s define the properties of
an exterior measure.

Definition 3.21 (Exterior Measure [4]). Let X be a set. An exterior measure (or outer
measure) µ∗ on X is a function µ∗ from the collection of all subsets of X to [0,∞] that
satisfies the following properties:

1. µ∗(∅) = 0

2. If E1 ⊆ E2, then µ∗(E1) ≤ µ∗(E2).

3. If E1, E2, ... is a countable family of sets, then

µ∗

(
∞⋃
j=1

Ej

)
≤

∞∑
j=1

µ∗(Ej) (countable subadditivity)

Now that we have an idea of measurable sets in hand, we need to look at measurable
functions to solidify the notion of integration theory. The Riemann integral is based off
of the class of step functions, with each give a finite sum.

Definition 3.22 (Step Function [4]). A step function is given as a finite sum

f =
N∑
k=1

ckχRk
,

where each Rk is a rectangle, and the ck are constants.

However, we need something slightly more general for the stronger notion of a Lebesgue
integral; this is where the simple function comes in.

Definition 3.23 (Simple Function, Standard Representations[1]). Let E ⊆ Rd be a
Lebesgue measurable set. A simple function on E is a measurable function φ : E → C
that takes only finitely many distinct values. The standard representation of a simple
function φ is the representation, φ =

∑N
k=1 ckχEk

where c1, ..., cN are the distinct values
taken by φ and Ek = φ−1(ck) = {φ = ck} for k = 1, ..., N .

Example 3.2. φ = χ[0,2] + χ[1,3] is a simple function on R because it takes only three
distinct values. Its standard representation is

φ = 0χE1 + 1χE2 + 2χE3 ,

where E1 = (−∞, 0) ∪ (3,∞), E2 = [0, 1) ∪ (2, 3], and E3 = [1, 2].Of course we could also
write φ in the form

φ = 1χE2 + 2χE3 ,

but while the sets E2, E3 are disjoint, they do not partition the domain R. In general,
one of the scalars ck in the standard representation of a simple function φ might be zero.
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Definition 3.24 (Really Simple Function [1]). A really simple function on R is a mea-
surable function φ of the form

φ =
N∑
k=1

ckχ[ak,bk),

where N ∈ N, ak < bk are real numbers, and ck is a scalar.

Now that we have a notion of measurable sets and measurable functions, we marry those
two concepts in integration theory with the following definition.

Definition 3.25 (L1-norm and Integrable Functions [1]). Let E ⊆ Rd be a measurable
set, and let f : E → F̄ be a measurable function on E.

1. The extended real number

‖f‖1 =

∫
E

|f |

is called the L1-norm of f on E (it could be infinite).

2. We say that f is integrable on E if ‖f‖1 =
∫
E
|f | <∞.

Remark 3.3. Although we refer to ‖·‖1 as a “norm,” it is actually only a seminorm on
the space of integrable functions because ‖f‖1 = 0 if and only if f = 0 a.e.

Now that we have defined what measurable functions and integrable functions are, a
natural next step is to talk about classes or specaes of these measurable functions to
study what sort of shared proerties they all have.

Definition 3.26 (The Lebesgue space L∞(E)[1]). If E is a measurable subset of Rd,
then the Lebesgue space of essentially bounded functions on E is the set of all essentially
bounded measurable functions f : E → F̄. That is,

L∞(E) =
{
f : E → F̄ : f is measurable and ‖f‖∞ <∞

}
.

where the L∞-norm (actually a seminorm) is defined as

‖f‖∞ = esssupx∈E|f(x)|.

Remark 3.4. Recall that the uniform norm of a function f on E is

‖f‖u = sup
x∈E
|f(x)|.

If f is continuous function whose domain is an open set U ⊆ Rd, then ‖f‖∞ = ‖f‖u.
However, in general we only have the inequality ‖f‖∞ ≤ ‖f‖u.

Definition 3.27 (The Lebesgue Space L2(E)[4]). Let E be a measurable subset of Rd.
Then the Lebesgue space of L2 functions on E is the equivalence class of measurable
functions for which

∫
E
|f(x)2| dµ(x) <∞. The norm is then

‖f‖L2(E,µ) =

(∫
E

|f(x)|2 dµ(x)

)1/2

.

There is also an inner product on this space given by

(f, g) =

∫
E

f(x)g(x) dµ(x) .
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Finally, as opposed to defining every p ∈ R as its own Lebesgue space of Lp functions, we
are going to give a more generic example (all the special cases are listed above though.)

Definition 3.28 (The Lebesgue Space Lp(E)[1] ). Let E be a measurable subset of Rd.

1. If 0 < p < ∞ and f : E → F̄ is measurable, then we say that f is p-integrable if∫
E
|f |p <∞. In that case we set,

‖f‖p =

(∫
E

|f |p
)1/p

.

If f is not p-integrable then we take ‖f‖p = ∞. We define Lp(E) to be the set of
all p-integrable functions on E, and call Lp(E) the Lebesgue space of p-integrable
functions on E.

2. If p = ∞, then L∞(E) is the set of all measurable functions f : E → F̄ that are
essentially bounded. That is, f belongs to L∞(E) if

‖f‖∞ = esssupx∈E|f(x)| <∞.

We call L∞(E) the Lebesgue space of essentially bounded functions on E.

Remark 3.5 (Lp spaces are vector spaces, for 1 ≤ p ≤ ∞). It is not hard to prove that Lp

spaces are linear spaces, i.e. closed under vector addition and scalar multiplication. Sim-
ilarly, it is not hard to show that Lp spaces are naturally equipped with a seminorm that
has nonnegativity, homogeneity, the triangle inequality, and almost everywhere unique-
ness. The standard argument works for 1 ≤ p <∞ and can separately be shown for L∞

recalling the definition of an essential supremum.

Definition 3.29 (Smooth Function[4]). A function that is indefinitely differentiable are
referred to as smooth functions, or C∞ functions.

Definition 3.30 (Compactly Supported Functions[1]). The support of a continuous func-
tion f on Rd is the closure in Rd of the set of points where f is nonzero:

supp(f) = {x ∈ Rd : f(x) 6= 0}.

We say that f has compact support if supp(f) is a compact set. Lastly, we say that the
space of continuous functions with compact support is

Cc(Rd) = {f ∈ C(Rd) : supp(f) is compact}.

Definition 3.31 (Schwartz Space S, Schwartz functions [1]). The Schwartz space, S, or
the space of rapidly decreasing functions on R is

S(R) = {f ∈ C∞(R) : xmDnf ∈ L∞ for all m,n ≥ 0}

where Dk = f (k) = dk

dxk
f is a differential operator. Also a function in the Schwartz space

is sometimes called a Schwartz function.

Definition 3.32 (Singular Function [1]). A function f on [a, b] (either extended real-
value or complex valued) is singular if f is differentiable at almost every point in [a, b]
and f ′ = 0 a.e. on [a, b].
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Definition 3.33 (Bounded Variation [1]). Let f : [a, b] → C be given. For each finite
partition

Γ = {a = x0 < · · · < xn = b}

of [a, b], set

SΓ = SΓ[f ; a, b] =
n∑
j=1

|f(xj)− f(xj−1)| .

The total variation of f over [a, b](or simply the variation of f , for short) is

V [f ] = V [f ; a, b] = sup{SΓ : Γ is a partition of [a, b]}.

We say that f has bounded variaton on [a, b] if V [f ; a, b] < ∞. We collect the functions
that have bounded variation on [a, b] to form the space

BV[a, b] = {f : [a, b]→ C : f has bounded variation}.

Definition 3.34 (Absolutely Continuous Functions [1]). We say that a function f :
[a, b] → C is absolutely continuous on [a, b] if for every ε > 0, there exists a δ > 0 such
that for any finite or countably infinite collection of nonoverlapping subintervals {[aj, bj]}
of [a, b], we have ∑

j

(bj − aj) < δ =⇒
∑
j

|f(bj)− f(aj)| < ε.

We denote the class of absolutely continuous functions on [a, b] by

AC[a, b] = {f : [a, b]→ C : f is absolutely continuous on [a, b]}.

So far all of the measures that we have discussed have had the property that 0 ≤ µ(E) ≤
∞, but in fact there are measures that can be positive or negative, which is what we
defined as a “signed measure”.

Definition 3.35 (Signed Measure [4]). A signed measure possesses all the properties of
a measure, except that it may take positive or negative values. More precisely, a signed
measure ν on a σ-algebra M is a mapping that satisfies:

1. The set function ν is extended-valued in the sense that −∞ < ν(E) ≤ ∞ for all
E ∈M.

2. If {Ej}∞j=1 are disjoint subsets of M, then

ν

(
∞⋃
j=1

Ej

)
=
∞∑
j=1

ν(Ej).

Definition 3.36 (Signed Measure [2]). Let’s consider a real measure µ on a σ-algebra
M. (Such measures are frequently called signed measures.) Define the total variation |µ|
as µ(E) = sup

∑∞
i=1 |µ(Ei)| where the supremum are being taken over all partitions {Ei}

of E. Now define

µ+ =
1

2
(|µ|+ µ) , µ− =

1

2
(|µ| − µ) .
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Then both µ+ and µ− are positive measures on M, and they are bounded. Also

µ = µ+ − µ−, |µ| = µ+ + µ−.

The measures µ+ and µ− are called positive and negative variations of µ, respectively.
This representation of µ as the difference of positive measures µ+ and µ− is known as the
Jordan decomposition of µ.

Definition 3.37 (Absolutely Continuous [2]). Let µ be a positive measure on a σ-algebra
M, and let λ be an arbitrary measure on M; λ may be positive or complex. We say that
λ is absolutely continuous with respect to µ, and write

λ� µ

if λ(E) = 0 for every E ∈M for which µ(E) = 0

Definition 3.38 (Concentrated [2]). If there is a set A ∈M such that λ(E) = λ(A ∩E)
for every E ∈M, we say that λ is concentrated on A. This is equivalent to the hypothesis
that λ(E) = 0 whenever E ∩ A = ∅.

Definition 3.39 (Mutually Singular [2]). Supposed λ1 and λ2 are measures on M, and
supposed there exists a pair of disjoint sets A and B such that λ1 is concentrated on A
and λ2 is concentrated on B. Then we say that λ1 and λ2 are mutually singular, and
write

λ1 ⊥ λ2

.

3.3 Core Results

Theorem 3.11 (Countable Subadditivity[1]). If E1, E2, ... are countably many sets in Rd,
then ∣∣∣∣∣

∞⋃
k=1

Ek

∣∣∣∣∣
e

≤
∞∑
k=1

|Ek|e .

Proof. If any particular Ek has infinite exterior measure then both sides of the equation
are ∞, so we are dine in this case. Therefore, assume that |Ek|e <∞ for every k, and fix

ε > 0. We know that for each k we can find a covering
{
Q

(k)
j

}
j

of Ek by countably many

boxes such that ∑
j

vol
(
Q

(k)
j

)
≤ |Ek|e +

ε

2k
.

Then
{
Q

(k)
j

}
j,k

is a covering of ∪kEk by countably many boxes, so∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣
e

≤
∞∑
k=1

∑
j

vol
(
Q

(k)
j

)
≤

∞∑
k=1

(
|Ek|e +

ε

2k

)
=

(
∞∑
k=1

|Ek|e

)
+ ε

Since ε is arbitrary, the result follows.
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Theorem 3.12 (Countable Additivity [1]). If E1, E2, ... are disjoint Lebesgue measurable
subsets of Rd, then ∣∣∣∣∣

∞⋃
k=1

Ek

∣∣∣∣∣ =
∞∑
k=1

|Ek| .

Proof. Step 1. Assume first that each set Ek is bounded. From subadditivity we obtain∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣
e

≤
∞∑
k=1

|Ek|e ,

so our task is to prove the opposite inequality.
Fix ε > 0. By the alternative definiton of a measurable set, there exists a closed set
Fk ⊂ Ek such that

|Ek \ Fk| <
ε

2k
.

Since Ek is bounded, Fk is compact. Hence {Fk}k∈N is a collection of disjoint compact
sets. Let N be any finite positive integer. Then, by using the fact that disjoint compact
sets are countably additive and monotonicity, we see that

N∑
k=1

|Fk| =

∣∣∣∣∣
N⋃
k=1

Fk

∣∣∣∣∣ ≤
∣∣∣∣∣
N⋃
k=1

Ek

∣∣∣∣∣ ≤
∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣ .
Taking the limit as N →∞,

∞∑
k=1

|Fk| = lim
N→∞

N∑
k=1

|Fk| ≤

∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣ .
Therefore,

∞∑
k=1

|Ek| =
∞∑
k=1

|Fk ∪ (Ek \ Fk)|

≤
∞∑
k=1

(|Fk|+ |Ek \ Fk|) (finite subadditivity)

≤
∞∑
k=1

(
|Fk|+

ε

2k

)
(alt. definition of measure)

=

(
∞∑
k=1

|Fk|

)
+ ε

≤

∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣+ ε (limit of measure of compact sets)

Since ε is arbitrary, it follows.
Step 2. Now assume that E1, E2, ... are arbitrary disjoint measurable subsets of Rd. Set

Ej
k = {x ∈ Ek : j − 1 ≤ ‖x‖ < j}, for j, k ∈ N.

Then {Ej
k}k,j is a countable collection of disjoint bounded measurable sets. For each

fixed k ∈ N we have
∞⋃
j=1

Ej
k = Ek,
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and furthermore
∞⋃
k=1

∞⋃
j=1

Ej
k =

∞⋃
k=1

Ek = E.

Therefore, ∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣ =

∣∣∣∣∣
∞⋃
k=1

∞⋃
j=1

Ej
k

∣∣∣∣∣ (by above)

=
∞∑
k=1

∞∑
j=1

|Ej
k| (by Step 1)

=

∣∣∣∣∣
∞⋃
j=1

Ej
k

∣∣∣∣∣ (by Step 1)

=
∞∑
k=1

|Ek| (by above).

Definition 3.40 (Algebra, premeasure [4]). Let X be a set. An algebra in X is a non-
empty collection of subsets of X that is closed under complements, finite unions, and finite
intersections. Let A be an algebra in X. A premeasure on an algebra A is a function
µ0 : A → [0,∞] that satisfies:

1. µ0(∅) = 0.

2. If E1, E2, ... is a countable collection of disjoint sets in A with ∪∞k=1Ek ∈ A, then

µ0

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

µ0(Ek).

In particular, µ0 is finitely additive on A.

Remark 3.6 (Premeasure and Outer Measure[4]). The example of the Lebesgue outer
measure belongs to a large class of exterior measures that can all be obtained using
“coverings” by a family of special sets whose measures are taken as known. This idea
is systematized by the notion of a “premeasure”, and premeasures give rise to exterior
measures in a natrual way. In fact, we can extend the premeasure to a measure if we have
a σ-algebra generated by our algebra on which the presemausre is defined.

Theorem 3.13 (Carathéodory’s Separation Condition [4]). A set E in X is Carathéodory
measurable, or simply measurable, if one has

µ∗(A) = µ∗(E ∩ A) + µ∗(E
C ∩ A), for every A ⊂ X.

Moreover, given an exterior measure µ∗ on a set X, the collection M of Carathédory
measurable sets form a σ-algebra. Morover µ∗ restricted to M is a measure.

Proof. A first observation we make is that to prove a set E is measurable, it suffices to
verify

µ∗(A) ≥ µ∗(E ∩ A) + µ(EC ∩ A)

22



Qualifying Exam: Real and Complex Analysis Scott

since the reverse inequality is automatically verified by the subadditivity property of
exterior measure. Clearly, ∅ and X belong to M and the symmetry inherent in conditon
3.3 shows that EC ∈ M whenever E ∈ M. Thus M is nonempty and closed under
complements. Next, we prove that that M is closed under finite unions of disjoint sets,
and µ∗ is finitely additive on M. Indeed if E1, E2 ∈M, and A is any subset of X, then

µ∗(A) = µ∗(E2 ∩ A) + µ∗(E
C
2 ∩ A)

= µ∗(E1 ∩ E2 ∩ A) + µ∗(E
C
1 ∩ E2 ∩ A) + µ∗(E1 ∩ EC

2 ∩ A) + µ∗(E
C
1 ∩ EC

2 ∩ A)

≥ µ∗((E1 ∪ E2) ∩ A) + µ∗((E1 ∪ E2)C ∩ A)

where in the first two lines we have used the measurability condition on E2 and then E1,
and where the last inequality was obtained using the subadditivity of µ∗ and the fact that
E1 ∪ E2 = (E1 ∩ E2) ∪ (EC

1 ∩ E2) ∪ (E1 ∪ EC
2 ). Therefore, we have that E1 ∪ E2 ∈ M,

and if E1 and E2 are disjoint, we find

µ∗(E1 ∪ E2) = µ∗(E1 ∩ (E1 ∪ E2)) + µ∗(E
C
1 ∩ (E1 ∪ E2))

= µ∗(E1) + µ∗(E2)

Finally, it suffies to show that M is closed under countable unions of disjoint sets, and
that µ∗ is countably additive onM. Let E1, E2, ... denote a countable collection of disjoint
sets in M, and define

Gn =
n⋃
j=1

Ej and G =
∞⋃
j=1

Ej.

For each n, the set Gn is a finite union of sets in M, and hence Gn ∈ M. Moreover, for
any A ⊂ X we have

µ∗(Gn ∩ A) = µ∗(En ∩ (Gn ∩ A)) + µ∗(E
C
n ∩ (Gn ∩ A))

= µ∗(En ∩ A)) + µ∗(Gn−1 ∩ A)

=
n∑
j=1

µ∗(Ej ∩ A),

where the last equality is obtained by induction. Since we know that Gn ∈ M, and
GC ⊂ GC

n , we find that

µ∗(A) = µ∗(Gn ∩ A) + µ∗(G
C
n ∩ A) ≥

n∑
j=1

µ∗(Ej ∩ A) + µ∗(G
C ∩ A)

Letting n tend to infinity, we obtain

µ∗(A) ≥
n∑
j=1

µ∗(Ej ∩ A) + µ∗(G
C ∩ A) ≥ µ∗(G ∩ A) + µ∗(G

C ∩ A)

= µ∗(A).

Therefore all of the inequalities above are equalities, and we conclude that G ∈ M, as
desired. Moreover, taking A = G in the above, we find that µ∗ is countably additive on
M, and the proof of the theorem is complete.
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A
E

A ∩ E

A \ E

Figure 1: If E is measurable, then |A∩E|e and |A\E|e must sum to |A|e for every set A.

Theorem 3.14 (Carathéodory’s Criterion [1]). A set E ⊂ Rd is Lebesgue measurable if
and only if

∀A ⊆ Rd, |A|e = |A ∩ E|e + |A \ E|e.

Proof. ⇒. Suppose that E is measurable, and fix any set A ⊆ Rd. Since A = (A ∩ E) ∪
(A \ E), subadditivity implies that

|A|e ≤ |A ∩ E|e + |A \ E|e. (3)

There exists a Gδ-set H ⊇ A such that |H| = |A|e. We can write H as a disjoint union
H = (H ∩ E) ∪ (H \ E). Since Lebesgue measure is countably additive on measurable
sets and since H and E are measurable, we conclude that

|A|e = |H| = |H ∩ E|+ |H \ E| (countable additivity)

≥ |A ∩ E|e + |A \ E|e (monotonicity)

⇐. Let E be any subset of Rd that satisfies equation 3. For each k ∈ N, let Ek = E∩Bk(0).
Fix ε > 0, and let U be an open set that contains Ek and satisfies

|Ek|e ≤ |U | ≤ |Ek|e + ε (regularity).

By replacing U with U ∩ Bk(0) if necessary, we can assume that U ⊆ Bk(0). Using
equation 3, we compute that

|Ek|e + |U \ Ek|e = |U ∩ Ek|e + |U \ Ek|e (since Ek ⊆ U)

= |U ∩ E|e + |U \ E|e (since U ⊆ Bk(0))

= |U | (by equation 3)

≤ |Ek|e + ε

Since |Ek|e is finite, we can subtract it from both sides to obtain that |U \Ek|e ≤ ε. Thus
Ek is measurable, and therefore E = ∪Ek is measurable as well.

Lemma 3.15 (Borel - Cantelli). Suppose that sets Ek ⊆ Rd satisfy
∑
|Ek|e < ∞. Then

lim inf Ek and lim supEk each have exterior zero.
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Proof. Recall that the definition of limsup is

lim sup
k→∞

Ek =
∞⋂
j=1

(
∞⋃
k=j

Ek

)
.

This means that we can use the following properties, we can bound the measure of the
limit superior. ∣∣∣∣lim sup

k→∞
Ek

∣∣∣∣
e

=

∣∣∣∣∣
∞⋂
j=1

(
∞⋃
k=j

Ek

)∣∣∣∣∣
e

≤

∣∣∣∣∣
∞⋃
k=j

Ek

∣∣∣∣∣
e

≤
∞∑
k=j

|Ek|e

<∞

where the first inequality is due to monotonicity of the fact that ∩ (∪Ek) ⊆ ∪Ek, and
the second is the finite subadditivity of exterior measure. Lastly, we use the fact that∑
|Ek|e <∞ by hypothesis.

This last fact can only happen if it converges to something and a convergent series means
that the tail of that convergent series must approach zero, or

lim
k→∞

∞∑
k=j

|Ek|e = 0

Lastly, putting all the pieces together and since it is an exterior measure (and not a signed
measure) we know that

0 ≤
∣∣∣∣lim sup

k→∞
Ek

∣∣∣∣
e

≤ 0

which implies that |lim supk→∞Ek|e = 0.
The same argument can be used for the liminf recalling that it is defined as lim infk→∞Ek =
∪∞j=1

(
∩∞k=jEk

)
. This of course means that we have to apply subadditivity and then mono-

tonicity.
This also extends to measure if we further assume that {Ek}∞k=1 are all measurable.

Remark 3.7 (Littlewood’s three principles[4]). Although the notions of measurable sets
and measurable functions represent new tools, we should not overlook their relation to
the older concepts they replaced. Littlewood aptly summarized these connections in the
form of three principles that provide a useful intuitive guide in the initial study of the
theory.

1. Every set is nearly a finite union of intervals.

2. Every function is nearly continuous. (Luzin’s theorem)

3. Every convergent sequence is nearly uniformly convergent. (Egoroff’s theorem)

25



Qualifying Exam: Real and Complex Analysis Scott

Theorem 3.16 (Measure of finite cubes[4]). Suppose E is a measurable subset of Rd.
Then for every ε > 0, if m(E) is finite, there exists a finite union F = ∪Nj=1Qj of closed
cubes such that

m(E4F ) ≤ ε,

where E4F is the symmetric difference between the sets E and F , defined by E4F =
(E \ F ) ∪ (F \ E), which consists of those points that belong to only one of the two sets,
E or F .

Proof. Choose a family of closed cubes {Qj}∞j=1 so that

E ⊂
∞⋃
j=1

Qj and
∞∑
j=1

|Qj| ≤ m(E) +
ε

2
.

Since m(E) < ∞, the series converges and there exists N > 0 such that
∑∞

j=N+1 |Qj| <
ε/2. If F = ∪Nj=1Qj, then

m(E4F ) = m(E \ F ) +m(F \ E)

≤ m

(
∞⋃

j=N+1

Qj

)
+m

(
∞⋃
j=1

Qj − E

)

≤
∞∑

j=N+1

|Qj|+
∞∑
j=1

|Qj| −m(E)

≤ ε.

Theorem 3.17 (Luzin’s Theorem[1]). Let E be a bounded, measurable subset of Rd, and
let f : E → F̄ be measurable and finite a.e. Then for each ε > 0, there exists a closed set
F ⊂ E such that |E \ F | < ε and f

∣∣
F

is continuous.

Proof. Step 1. Let φ =
∑N

k=1 ckχEk
be the standard representation of a simple function

φ on E, and fix ε > 0. Since each subset Ek is measurable, the alternative definition of
measure says that there exists closed sets Fk ⊆ Ek such that

|Ek \ Fk| <
ε

N
, for k = 1, ..., N.

The set F = F1∪· · ·∪FN is closed, and since E1, ..., EN partition E. we have |E \F | < ε.
Since E is bounded, the sets F1, ..., FN are compact and disjoint. Consequently, Fj is
separated from Fk by a positive distance when j 6= k. Since φ is constant on each
individual set Fk, it follows that the restriction of φ to F is continuous.
Step 2. Now let f be an arbitrary measurable function on E, and fix ε > 0. We know
that there exist simple functions φn that converge pointwise to f on E. Applying Step 1,
for each integer n > 0 we can find a closed set Fn ⊆ E such that

|E \ Fn| <
ε

2n+1
and φn

∣∣∣∣
Fn

is continuous.

By Egorov’s Theorem, there exists a measurable set A ⊆ E with measure |A| < ε/4 such
that φn converges to f uniformly on E \A. Also by the alternative definition of measure,
there exists a closed set F0 ⊆ E \ A such that

|(E \ A) \ F0| <
ε

4
.
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Writing E \ F0 = (E \ A) \ F0 ∪ A, we see that

|E \ F0| ≤ |(E \ A) \ F0|+ |A| <
ε

4
+
ε

4
=
ε

2
.

Further, φn converges to f uniformly on F0 since F0 is contianed in E \ A.
Next, let

F =
∞⋂
n=0

Fn.

Since F is closed and bounded, it is compact. Further,

|E \ F | =

∣∣∣∣∣
∞⋃
n=0

(E \ Fn)

∣∣∣∣∣ ≤
∞∑
n=0

|E \ Fn| <
∞∑
n=0

ε

2n+1
= ε.

Since φn is continuous on Fn, it is continuous on the smaller set F . Thus {φn
∣∣
F
}n∈N

is a sequence of continuous functions that converge uniformly on F to f
∣∣
F

. Therefore

f
∣∣
F

is continuous because the uniform limit of a sequence of continuous functions is
continuous.

Theorem 3.18 (Egorov’s Theorem [1]). Let E be a measurable subset of Rd with |E| <∞.
Suppose that {fn} is a sequence of measurable funcitons on E (either complex-valued or
extended real-valued) sich that fn → f a.e., where f is finite a.e.. Then for each ε > 0
there exists a measurable set A ⊂ E such that

1. |A| < ε

2. fn converges uniformly to f on E \ A, i.e.,

lim
n→∞

‖(f − fn) · χAC‖u = lim
n→∞

(∑
x 6∈A

|f(x)− fn(x)|

)
= 0.

Proof. Case 1: Complex-Valued Functions. Assume that the fn are complex valued.
Since the pointwise a.e. limit of measurable functions is measurable, we know that f is
measurable.
Let Z be the set of points where fn(x) does not converge to f(x). By hypothesis, Z has
measure zero. In order to quantify more precisely the points where fn(x) is far from f(x),
for each k ∈ N we let

Zk =

{
x ∈ E : |f(x)− fn(x)| ≥ 1

k
for infinitely many n

}
.

Since Zn ⊂ Z we have |Zn| = 0. By the Borel- Cantelli Lemma,

Zk = lim sup
n→∞

{
|f − fn| ≥

1

k

}
=
∞⋂
n=1

An(k),

where for k, n ∈ N we take

An(k) =
⋃{

|f − fn| ≥
1

k

}
.
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Each set An(k) is measurable. By construction,

A1(k) ⊃ A2(k) ⊃ and
∞⋂
n=1

An(k) = Zk.

Since |E| has finite measure, we can therefore apply continuity from above to obtain

lim
n→∞

|An(k)| = |Zk| = 0.

Fix any ε > 0. For each integer k ∈ N we can find an integer nk ∈ N such that

|An(k)| < ε

2k
.

By subadditivity, the set

A =
∞⋃
k=1

Ank
(k)

has measure |A| < ε. Moreoever, if x /∈ A then x /∈ Ank
(k) for any k, so |f(x)−fm(x)| < 1

k

for all m ≥ nk.
In summary, we have found a set A with measure |A| < ε such that for each integer k
there exists an integer nk such that

m ≥ nk =⇒ sup
x/∈A
|f(x)− fm(x)| ≤ 1

k
.

This says that fn converges uniformly to f on E \ A.
Case 2: Extended Real-Valued Functions Now assume that fn and f are extended real-
valued functions with f finite a.e.. Let Y = {f = ±∞} be the set of measure zero
consisting of all points where f(x) = ±∞. Then F = E \ Y is measurable, f is finite
on F , and fn → f a.e. on F . Now repeat the proof of Case 1 with E replaced by F .
Although fn(x) van be ±∞, if x ∈ F then f(x) − fn(x) never takes an indeterminate
form, and the proof preceeds just as before to construct measurable set A ⊂ F such that
|A| < ε and fn → f uniformly on F \A. Consequently B = A∪ Y is a measurable subset
of E that satisfies |B| = |A| < ε, and fn → f uniformly on E \B.

Definition 3.41 (Integral of a Nonnegative Simple Function[1]). Let φ be a nonnegative
simple function on a measurable set E ⊂ Rd, and let φ =

∑N
k=1 ckχEk

be its standard
representation. The Lebesgue integral of φ over E is∫

E

φ =

∫
E

φ(x) dx =
N∑
k=1

ck|Ek|.

Lemma 3.19 (Linearity and monotonicity of nonnegative simple functions [1]). If φ and
ψ are nonnegative simple functions defined on a measurable set E ⊂ Rd and c ≥ 0, then
the following statements hold.

1.
∫
E

(φ+ ψ) =
∫
E
φ+

∫
E
ψ and

∫
E
cφ = c

∫
E
φ.

2. If E1, ..., EN are any measurable subsets of E and c1, ..., cN are any nonnegative
scalars, then ∫

E

N∑
k=1

ckχEk
=

N∑
k=1

ck|Ek|.
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Proof. Trivial. They follow from the properties of nonnegative and simple functions

Recall that we are able to approximate any nonnegative function by nonnegative simple
funcitons.

Theorem 3.20 (Approximating nonnnegative functions by nonnegative simple functions[1]).
Let E ⊂ Rd be a measurable set, and let f : E → [0,∞] be a nonnegative, measurable
function on E.

1. There exist nonnegative simple functions φn such that φn ↗ f . That is 0 ≤ φ1 ≤
φ2 ≤ · · · , and limn→∞ φn(x) = f(x) for each x ∈ E.

2. If f is bounded on some set A ⊆ E, then we can construct the functions φn in
statement (a) so that they converge uniformly to f on A, i.e.,

lim
n→∞

‖(f − φn) · χA‖u = lim
n→∞

(
sup
x∈A
|f(x)− φn(x)|

)
= 0.

Proof. Not Trivial, but not relevant.

Definition 3.42 (Lebesgue Integral of a Nonnegative Function[1]). Let E ⊂ Rd be a
measurable set. If f : E → [0,∞] is a measurable function, then the Lebesgue integral of
f over E is ∫

E

f =

∫
E

f(x) dx = sup

{∫
E

φ : 0 ≤ φ ≤ f, φ simple

}
.

Definition 3.43 (Positive and Negative Parts[1]). Given an extended real-valued function
f : X → [−∞,∞], the positive part of f is

f+(x) = max{f(x), 0},

and the negative part of f is

f−(x) = max{−f(x), 0}.

By construction, f+ and f− are nonnegative extended real-valued functions, and we have

f = f+ − f− and |f | = f+ + f−.

Definition 3.44 (Lebesgue Integral of an Extended Real-Valued Function[1]). Let f :
E → [−∞,∞]be a measurable extended real-valued function defined on a measurable set
E ⊂ Rd. The Lebesgue integral of f over E is∫

E

f =

∫
E

f+ −
∫
E

f−,

as long as this does not have the form ∞−∞ (in that case, the integral is undefined).

Definition 3.45 (Lebesgue Integral of a Complex-Valued Function[1]). Let f : E → C
be a measurable complex-valued function defined on a measurable set E ⊆ Rd. Write f
in real and imaginary parts as f = fr + ifi, where fr and fi are real-valued. If

∫
E
fr and∫

E
fi both exist and are finite, then the Lebesgue integral of f over E is∫

E

f =

∫
E

fr + i

∫
E

fi.

Otherwise, the integral is undefined.
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Theorem 3.21 (Monotone Convergence Theorem [1]). Let E ⊆ Rd be a measurable set,
and let fn : E → [0,∞] be measurable functions on E such that fn ↗ f . Then

lim
n→∞

∫
E

fn =

∫
E

f.

Proof. By hypothesis, for each x ∈ E we have (in the extended real sense) that

f1(x) ≤ f2(x) ≤ · · · and f(x) = lim
n→∞

fn(x).

Consequently, since fn are all nonnegative, we at least have the inequalities

0 ≤
∫
E

f1 ≤
∫
E

f2 ≤ · · · ≤
∫
E

f ≤ ∞.

Note that we have not assumed that any of the integrals in the preceding line are finite.
However, an increasing sequence of nonnegative extended real numbers must converge to
a nonnegative extended real number, so

I = lim
n→∞

∫
E

fn

exists in the extended real sense. Further, it follows from equation 3.3 that 0 ≤ I ≤∫
E
f ≤ ∞. We must prove that I ≥

∫
E
f .

Let φ be any simple function such that 0 ≤ φ ≤ f , and fix 0 < α < 1. Set En = {fn ≥ αφ},
and observe that

E1 ⊆ E2 ⊆ · · · .
Further, ∪En = E (this is where we use the assumption α < 1). The continuity from
below property of the integral implies that

∫
En
φ→

∫
E
φ. Consequently,

I = lim
n→∞

∫
E

fn (definition of I)

= lim sup
n→∞

∫
E

fn (lim = limsup when limit exists)

≥ lim sup
n→∞

∫
En

fn (since En ⊆ E)

≥ lim sup
n→∞

∫
En

αφ (by definition of En)

= α

∫
E

φ (by linearity and continuity from below)

Letting α → 1, we see that I ≥
∫
E
φ. Finally, by taking the supremum over all such

simple functions φ we obtain the inequality I ≥
∫
E
f .

Lemma 3.22 (Fatou’s Lemma [1]). If {fn}n∈N is a sequence of nonnegative measurable
functions on a measurable set E ⊆ Rd, then∫

E

(
lim inf
n→∞

fn

)
≤ lim inf

n→∞

∫
E

fn.

In particular, if fn(x)→ f(x) for each x ∈ E, then∫
E

f ≤ lim inf
n→∞

∫
E

fn.
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Proof. Define
f(x) = lim inf

n→∞
fn(x) = lim

k→∞
inf
n≥k

fn(x) = lim
k→∞

gk(x)

where
gk(x) = inf

n≥k
fn(x).

The functions gk increase monotonically to f , i.e., gk ↗ f . The Monotone Convergence
Theorem therefore implies that ∫

E

f = lim
k→∞

∫
E

gk.

However, gk ≤ fk and therefore
∫
gk ≤

∫
fk for every k. Consequently,∫

E

f = lim
k→∞

∫
E

gk = lim inf
k→∞

∫
E

gk ≤ lim inf
k→∞

∫
E

fk.

The second more particular equation follows by recalling that if the limit of a sequence
exists, then it equals the liminf of the sequence.

Theorem 3.23 (Dominated Convergence Theorem [1]). Let {fn}n∈N be a sequence of
measurable functions (either extended real-valued or complex-valued) defined on a mea-
surable set E ⊂ Rd. If

1. f(x) = limn→∞ fn(x) exists for a.e. x ∈ E, and

2. there exists a single integrable function g such that for each n ∈ N we have |fn(x)| ≤
g(x) a.e.,

then fn converges to f in L1-norm, i.e.

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫
E

|f − fn| = 0.

As a consequence,

lim
n→∞

∫
E

fn =

∫
E

f.

Proof. The hypotheses imply that g is integrable and nonnegative almost everywhere.
Therefore

0 ≤
∫
E

g =

∫
E

|g| <∞

Step 1. Suppose first that fn ≥ 0 a.e. for each n. In that case we can apply Fatou’s
Lemma to obtain

0 ≤
∫
E

f =

∫
E

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
E

fn ≤
∫
E

g <∞.
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We also have g − fn ≥ 0 a.e., so we can apply Fatou’s Lemma to the functions g − fn.
Doing this, we obtain∫

E

g −
∫
E

f =

∫
E

(g − f) (f and g are integrable)

=

∫
E

lim inf
n→∞

(g − fn) (since fn → f a.e.)

≤ lim inf
n→∞

∫
E

(g − fn) (Fatou’s Lemma)

= lim inf
n→∞

(∫
E

g −
∫
E

fn

)
(fn and g are integrable)

=

∫
E

g − lim sup
n→∞

∫
E

fn (properties of liminf).

All of the integrals that appear in the preceding calculation are finite, so by rearranging we
see that lim supn→∞

∫
E
fn ≤

∫
E
f . Combining this with what we have shown by properties

of fn, f . yields ∫
E

f ≤ lim inf
n→∞

∫
E

fn ≤ lim sup
n→∞

∫
E

fn ≤
∫
E

f.

Hence limn→∞
∫
E
fn exists and equals

∫
E
f . This does not show that fn converges to f in

L1-norm, but we will establish that in Step 2.
Step 2. Now assume that the fn are arbitrary functions (either extended real-valued
or complex-valued) that satisfy the hypotheses. In this case, the functions |f − fn| are
nonnegative a.e., converges pointwise a.e. to the zero function, and satisfy

|f − fn| ≤ |f |+ |fn| ≤ 2g a.e.

Since 2g is integrable, we can apply Step 1 to |f − fn|, which gives us

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫
E

|f − fn| =
∫
E

0 = 0.

This proves that fn converges to f in L1-norm. Applying that f, fn are both integrable
and converge in the L1-norm, we also get in the limit case limn→∞

∫
E
fn =

∫
E
f .

Corollary 3.23.1 (Bounded Convergence Theorem [1]). Let E be a measurable subset of
Rd such that |E| < ∞. If {fn}n∈N is a sequence of measurable functions on E such that
fn → f a.e. and there exists a single finite constanct M such that |fn| ≤M a.e. for every
n, then fn → f in L1-norm.

Proof. Since |E| <∞, the constant function M is integrable. The result therefore follows
by applying the DCT with g(x) = M .

Theorem 3.24 (Riesz-Fischer Theorem[4]). The vector space L1 is complete in its metric.

Proof. Suppose {fn} is a Cauchy sequence in the norm, so that ‖fn − fm‖ → 0 as n,m→
∞. The plan of the proof is to extract a subsequence of {fn} that converges to f , both
pointwise almost everywhere and in the norm.
Under ideal circumstances we would have that the sequence {fn} converges almost every-
where to a limit f , and we would then prove that the sequence converges to f also in the
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pointwise a.e.
convergence

Lp-norm
convergence

⇓ if |E| <∞ ⇓

L∞-norm
convergence

=⇒ almost uni-
form conver-
gence

=⇒ convergence
in measure

=⇒ pointwise a.e.
convergence of a
subsequence

⇓

pointwise a.e.
convergence

Figure 2: Convergence of function spaces and their implications

norm. Unfortunately, almost everywhere convergence does not hold for general Cauchy
sequences. The main point, however is that if the convergence in the norm is rapid enough,
then almost everywhere convergence is a consequence, and this can be achieved by dealing
with an appropriate subsequence of the original sequence.
Indeed, consider a subsequence {fnk

}∞k=1 of {fn} with the following property:∥∥fnk+1
− fnk

∥∥ ≤ 2−k, ∀k ≥ 1.

The existence of such a subsequence is guaranteed by the fact that ‖fn − fm‖ ≤ ε whenever
n,m ≥ N(ε), so it sufficies to take nk = N(2−k).
We now consider the series whose convergence will be seen below,

f(x) = fn1(x) +
∞∑
k=1

(
fnk+1

(x)− fnk
(x)
)

and

g(x) = |fn1(x)|+
∞∑
k=1

∣∣fnk+1
(x)− fnk

(x)
∣∣ ,

and note that∫
|fn1|+

∞∑
k=1

∫ ∣∣fnk+1
(x)− fnk

(x)
∣∣ ≤ ∫ |fn1|+

∞∑
k=1

2−k <∞.

So the monotone convergence theorem implies that g is integrable, and since |f | ≤ g,
hence so is f . In particular, the series defining f converges almost everywhere (by the
construction of the telescoping series), we find that

fnk
(x)→ f(x) a.e. x.

To prove that fnk
→ f in L1 as well, we simply observe that |f − fnk

| ≤ g for all k, and
apply the dominated convergence theorem to get ‖fnk

− f‖L1 → 0 as k tends to infinity.
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Finally, the last step of the proof consists in recalling that {fn} is Cauchy. Given ε > 0,
there exists N ∈ N such that for all n,m ≥ N we have ‖fn − fm‖L1 < ε/2. If nk is chosen
so that nk > N , and ‖fnk

− f‖ < ε/2, then the triangle inequality implies

‖fn − f‖ ≤ ‖fn − fnk
‖+ ‖fnk

− f‖ < ε/2 + ε/2 = ε

whenever n > N . Thus {fn} has a limit f in L1.

However, there is nothing remarkably special about L1 for it to be complete. In fact, [1]
states something much stronger! Recall, that being a Banach space is a complete normed
vector space.

Theorem 3.25 (Lp(E) is a Banach Space[1]). Let E be a measurable subset of Rd and
fix 1 ≤ p ≤ ∞. If we identify functions that are equal almost everywhere, then ‖·‖p is a
norm on Lp(E) and Lp(E) is complete with respect to this norm.

Sometimes you don’t even know where to start if you want to show that a property holds
for all functions in Lp(E), but if you can show it works for an “easy” special subclass of
funtions and then extend it to then entire space by approximating the functions by the
easier subclass.
To be more specific than the original definition of density, we provide equivalent conditions
of density specifically for Lp spaces.

Lemma 3.26 (Dense subsets of Lp(E)[1]). Let E ⊆ Rd be measurable, and fix 1 ≤ p ≤ ∞.
If S is a subset of Lp(E), then T.F.A.E.

1. S is dense in Lp(E), i.e., the closure of S equals Lp(E).

2. If f is any element of Lp(E), then there exists functions fn ∈ S such that fn → f
in Lp-norm.

3. If f is any element of Lp(E), then for each ε > 0 there exists a function g ∈ S such
that ‖f − g‖p < ε.

Now that we have these definitions let’s look at some families of functions that are dense
in L1(Rd).

Theorem 3.27 (Dense Function Families in L1(Rd)[4]). The following families of func-
tions are dense in L1(Rd)

1. The simple functions.

2. The step functions.

3. The continuous functions of compact support.

Proof. Let f be an integrable function on Rd. First, we may assume that f is real-valued,
because we may approximate its real and imaginary party independently. If this is the
case, we may then write f = f+− f−, where f+, f− ≥ 0, and it now suffices to prove the
theorem when f ≥ 0.
For the simple functions, we know that there exists an increasing sequence of nonnegative
simple functions {φk}∞k=1 that converge pointwise to f . By the dominated convergence
theorem (or even simply the monotone convergence theorem), we then have

‖f − φk‖L1 → 0 as k →∞.
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Thus there are simple functions that are arbitrary close to f in the L1 norm.
For the step functions, we first note that by the density of the simple functions, it sufficies
to approximate simple functions by step functions. Then, we recall that a simple functions
is a fiite linear combination of characteristic functions of sets of finite measure, so it suffies
to show that if E is such a set, then there is a step function ψ so that ‖χE − ψ‖L1 is small.
However, we now recall that there is an almost disjoint family of rectangles {Rj} with
m(E4 ∪Mj=1 Rj) ≤ 2ε. This χE and ψ =

∑
j χRj

differ at most on a set of measure 2ε,
and as a result we find that ‖χE − ψ‖L1 < 2ε.
By the density of step functions in L1, it suffieces to establish the continuous functions
of compact support when f is the characteristic function of a rectangle. In the one-
dimensional case, where f is the characteristic functino of an interval [a, b], we may choose
a continuous piecewise linear function g defined by

g(x) =

{
1, if a ≤ x ≤ b,

0, if x ≤ a− ε or x ≥ b+ ε

and with g linear on the intervals [a − ε, a] and [b, b + ε]. Then ‖f − g‖L1 < 2ε. In
d dimensions, it suffices to note that the characteristic functions of a rectangle is the
product of characteristic functions of intervals. Then, the desired continuous function of
compact support is simply the product of functions like g defined above.
The results above for L1(Rd) lead immediately to an extension in which Rd can be replaced
by any fixed subset E of positive measure. In fact in E is such a subset, we can define
L1(E) and carry out the arguments that are analogous to L1(Rd). Better yet, we can
proceed by extending any function f on E by setting f̃ = f on E and f̃ = 0 on EC , and

defining ‖f‖L1(E) =
∥∥∥f̃∥∥∥

L1(Rd)
.

Again, L1 is not that special and the above arguments can be extended to Lp spaces, with
some exceptions of L∞-spaces.

Theorem 3.28 (Compactly Supported Functions are Dense[1]). Let E ⊆ Rd be a mea-
surable set. If 1 ≤ p <∞, then

Lpc(E) = {f ∈ Lp(E) : f is compactly supported}

is dense in Lp(E).

Proof. Choose f ∈ Lp(E), and for each N ∈ N define fn := f ·χE∩[−n,n]d . Then (f−fn)→
0 pointwise a.e., and

|f − fn|p = |f · χE\[−n,n]d |p ≤ |f |p ∈  Lp(E).

The Dominated Convergence Theorem therefore implies that |f − fn|p → 0 in L1-norm,
which is precisely the same as saying that fn → f in Lp-norm. Since each fn is compactly
supported, we conclude that the set of compactly supported functions in Lp(E) is dense
in Lp(E).

Remark 3.8 (Compactly Supported Functions aren’t always dense in L∞[1]). The con-
clusion of the above theorem can fail if p = ∞. For example, if f = 1 is the function
that is identically 1, then ‖f − g‖∞ ≥ 1 for every compactly supported function g. The
constant function 1 cannot be well-approximated in L∞-norm by compactly supported
function.
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Theorem 3.29 (Simple Functions are Dense.[1]). Assume that E ⊆ Rd is measurable and
fix 1 ≤ p ≤ ∞. The set S of all simple functions in Lp(E) is dense in Lp(E). Additionally
if p is finite, then the set Sc of all compactly supported simple functions on E is dense in
Lp(E).

Theorem 3.30 (Continuous Functions are Dense.[1]). The space Cc(Rd) consists of all
continuous, compactly supported functions on Rd. Then Cc(Rd) is dense in Lp(Rd) for
1 ≤ p <∞. Also, with respect to the L∞-norm, Cc(Rd) is dense in

C0(Rd) = {f ∈ C(Rd) : lim
‖x‖→∞

f(x) = 0},

where the limit means that for each ε > 0 there exists some compact set K such that
|f(x)| < ε for all x 6∈ K.

Theorem 3.31. Fix 1 ≤ p <∞. Let R be the set of all really simple functions on R,

R =

{
N∑
k=1

ckχ[ak,bk) : N > 0, ck scalar, ak < bk ∈ R

}

is dense in Lp(R) when p is finite.

Theorem 3.32 (Orthonormal sets on Hilbert Spaces are Equivalent[4]). The following
properties of an orthonormal set {ek}∞k=1 are equivalent.

1. Finite linear combinations of elements in {ek} are dense in H.

2. If f ∈ H, and (f, ej) = 0 for all j, then f = 0.

3. if f ∈ H, and SN(f) =
∑N

k=1 akek, where ak = (f, ek), then SN(f)→ f as N →∞
in the norm.

4. If ak = (f, ek), then ‖f‖2 =
∑∞

k=1 |ak|2.

Proof. 1 =⇒ 2: Given f ∈ H with (f, ej) = 0 for all j, we wish to prove that f =
0. By assumption, there exists a sequence {gn} of elements in H that are finite linear
combinations of elements in {ek}, and such that ‖f − gn‖ tends to 0 as n goes to infinity.
Since (f, ej) = 0 for all j, we must have (f, gn) = 0 for all n; therefore an application of
the Cauchy-Shwartz inequality gives

‖f‖2 = (f, f) = (f, f − gn) ≤ ‖f‖‖f − gn‖, for all n.

Letting n→∞ proves that ‖f‖2 = 0; hence f = 0.
2 =⇒ 3: For f ∈ H, we define

SN(f) =
N∑
k=1

akek, where ak = (f, ek),

and prove first that SN(f) converges to some element g ∈ H. Indeed, one notices that
the definitions of ak inplies (f − SN(f)) ⊥ Sn(f), so the Pythagorean theorem gives us

‖f‖2 = ‖f − SN(f)‖2 + ‖SN(f)‖2 = ‖f − SN(f)‖+
N∑
k=1

|ak|2.
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Hence ‖f‖2 ≥
∑N

k=1 |ak|2, and letting N tend to infinity, we obtain Bessel’s inequality

∞∑
k=1

|ak|2 ≤ ‖f‖2

which implies that the series
∑N

k=1 |ak|2 converges. Therefore, {SN(f)}∞N=1 forms a Cauchy
sequence in H since

‖SN(f)− SM(f)‖2 =
N∑

k=M+1

|a)k|2, whenever N > M.

Since H is complete, there exists a g ∈ H such that SN(f)→ g as N tends to infinity.
Fix j, and noe that for all sufficiently large N , (f −SN(f), ej) = aj−aj = 0. Since SN(f)
tends to g, we conclude that

(f − g, ej) = o for all j.

Hence f = g by assumption, and we have proved that f =
∑∞

k=1 akek.
3 =⇒ 4: Notice that we immediately get in the limit as N goes to infinity

‖f‖2 =
∞∑
k=1

|ak|2.

4 =⇒ 1: We see from the proof of 2 that ‖f − SN(f)‖ converges to 0. Since each
SN(f) is a finite linear combination of elements in {ek}, we have completed the circle of
implications.

Remark 3.9 (When Bessel’s and Parseval’s inequalities work). In particular, a closer
look at the proof shows that Bessel’s inequality holds for any orthonormal family {ek}.
In contrast, the identity

‖f‖2 =
∞∑
k=1

|ak|2, where ak = (f, ek),

Parseval’s identity, holds if and only if {ek}∞k=1 is also an northnormal basis.

On this topic, [1] has a very similar statement and proof, but also has some slight differ-
ences which will be helpful.

Theorem 3.33 (Orthnormal sequence in a Hilbert Space[1]). If E = {en}n∈N is an
orthnormal sequence in a Hilbert Space H, then the following statements hold.

1. Bessel’s inequality:
∑∞

n=1 |〈x, en〉|2 ≤ ‖x‖
2 for each x ∈ H

2. If the series x =
∑∞

n=1 cnen converges, then cn = 〈x, en〉 for each n ∈ N.

3.
∑∞

n=1 cnen converges ⇐⇒
∑∞

n=1 |cn|2 <∞.

Similarly, we have another theorem that goes along with this theme of Hilbert spaces and
bases.
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Theorem 3.34 (Orthonormal sequences in Hilbert Spaces [1]). If H is a Hilbert space
and {en}n∈N is an orthonormal sequence in H, then T.F.A.E.

1. {en}n∈N is complete, i.e. span{en}n∈N = H.

2. For each x ∈ H, there exists a unique sequence of scalars (cn)n∈N such that x =∑
cnen.

3. Every x ∈ H satisfies

x =
∞∑
n=1

〈x, en〉en,

where this series converges in the norm of H.

4. Plancherel’s Equality holds:

‖x‖2 =
∞∑
n=1

|〈x, en〉|2 , for all x ∈ H.

5. Parseval’s Equality holds:

〈x, y〉 =
∞∑
n=1

〈x, en〉〈en, y〉 for all x, y ∈ H.

Proof. This proof involves essentially the same ideas as above.

Theorem 3.35 (Finite dimensional Hilbert spaces have an orthonormal basis[1]). If H
is a finite-dimensional Hilbert space then H contains an orthonormal basis {e1, ..., ed},
where d = dim(H) is the dimension of the vector space H.

Proof. Since H is a d-dimensional vector space, it has a Hamel basis, i.e., there is a
set B = {x1, ..., xd} that is both linearly indenpendent and spans H. We will define a
recursive procedure that constructs orthogonal vectors y1, ..., yd that span H.
First, set y1 = x1, and note that x1 6= 0 since x1, ..., xd are linearly independent. Define

M1 = span{x1} = span{y1}.

If d = 1 then M1 = H and we stop here. Otherwise M1 is a proper subset of H, and
x2 6∈M1 (because {x1, ..., xd} is linearly independent). Let p2 be the orthogonal projection
of x2 onto M1. Then y2 = x2−p2 is orthogonal to x1, and y2 6= 0 since x2 6∈M1. Therefore,
we can define

M2 = span{x1, x2} = span{y1, y2},

where the second equality follows from the fact that y1, y2 are linear combinations of
x1, x2 and vice, versa. Continuing in this way, we obtain orthogonal vectors y1, ..., yd that
span H. Hence {y1, ..., yd} is an orthogonal, but not necessarily orthonormal, basis for H.
Setting ek = yk/‖yk‖ therefore gives us an orthonormal basis {e1, ..., ed} for H.

Theorem 3.36 (Infinite dimensional separable Hilbert spaces have an orthonormal basis[1]).
If H is an infinite-dimensional separable Hilbert space, then H contains an orthonormal
basis of the form {en}n∈N.
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Proof. Since H is separable, it contains a countable dense subset {zn}n∈N. The span of
{zn}n∈N is dense in H, but {zn}n∈N need not be linearly independent. However, we can
extract a subsequence that is independent and has the same span. Simply let x1 be the first
zn that is nonzero. Then let x2 be the first zn after x1 that is not a multiple of x1. Then
let x3 be the first zn after x2 that does not belong to span{x1, x2}, and so forth. In this
way, we obtain an independent sequence {xn}n∈N such that span{xn}n∈N = span{zn}n∈N.
This span is dense in H by hypothesis. Now we apply the Gram-Schmidt procedure
utilized in the prior proof to the vectors x1, x2, ..., but without stopping. This gives us
orthonormal vectors e1, e2, ... such that for every n we have

span{e1, ..., en} = span{x1, ..., xn}.

Consequently, span{en}n∈N equals span{xn}n∈N, which equals span{zn}n∈N, which is dense
in H. Therefore, {en}n∈N is a complete orthonormal sequence, so it is, by definition, an
orthonormal basis for H.

Definition 3.46 (Fourier Transform on L1(R) [1]). The Fourier transform of f ∈ L1(R)

is the function f̂ : R→ C defined by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξx dx , for ξ ∈ R

Theorem 3.37 (Riemann - Lebesgue Lemma[1]). If f ∈ L1(R), then f̂ ∈ C0(R).

Definition 3.47 (Inverse Fourier Transform on L1(R) [1]). The inverse Fourier transform
of f ∈ L1(R) is

f̌(ξ) =

∫ ∞
−∞

f(x)e2πiξx dx , for ξ ∈ R

Theorem 3.38 (Inversion Formula [1]). If f, f̂ ∈ L1(R), then both f and f̂ are continu-
ous, and

f(x) =
(
f̂
)

(̌x) =

∫ ∞
−∞

f̂ e2πiξx dξ , for every x ∈ R.

Similarly,

f(x) =
(
f̌
)

(̂x) =

∫ ∞
−∞

f̌ e−2πiξx dξ , for every x ∈ R.

The fact that this works for functions over the real line is very handy, but what if we
know more about the functions at hand, specifically, what if the function is periodic or
part of the trigonometric system? How does that change the above Fourier Lemmas?

Definition 3.48 (1-periodic functions). Consider the space of functions that are 1-
periodic on R and are square integrable on [0, 1], where 1-periodic means that

f(x+ 1) = f(x) for x ∈ R.

We will denote this space by

L2(T) =

{
f : R→ C : f is 1-periodic and

∫ 1

0

|f(x)|2 dx <∞
}
.

Lemma 3.39 (Riemann - Lebesgue Lemma 2.0[1]). Let f ∈ L1(T), then f̂ ∈ c0, i.e.

lim
|n|→∞

f̂(n) = 0.
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3.4 More Technical Theorems

Theorem 3.40 (Fubini’s Theorem for Lebesgue measure [1]). Let E be a measurable
subset of Rm and let F be a measurable subset of Rn. If f : E × F → F̄ is integrable on
E × F then the following hold.

1. fx(y) = f(x, y) is measurable and integrable on F for a.e. x ∈ E.

2. f y(x) = f(x, y) is measurable and integrable on E for a.e. y ∈ F .

3. g(x) =
∫
F
fx(y) dy is measurable and integrable on E.

4. h(y) =
∫
E
f y(x) dx is measurable and integrable on F .

5. The following three integrals exist and are finite (i.e., they are real or complex
scalars), and they are equal as indicated:∫∫

E×F
f(x, y)(dx dy) =

∫
F

(∫
E

f(x, y) dx

)
dy

=

∫
E

(∫
F

f(x, y) dy

)
dx

Theorem 3.41 (Fubini’s Theorem for general product measure [2]). Let (X,I , µ) amd
(Y,J , λ) be a σ-finite measure spaces, and let f be an (I ×J )-measurable function on
X × Y .

1. If 0 ≤ f ≤ ∞, and if

φ(x) =

∫
Y

fx dλ , ψ(y) =

∫
X

f y dµ (x ∈ X, y ∈ Y ),

then φ is I -measurable, φ is J -measurable, and∫
X

φ dµ =

∫
X×Y

f d(µ× λ) =

∫
Y

φ dλ .

2. If f is complex and if

φ∗(X) =

∫
Y

|f |x dλ and

∫
X

φ∗ dµ <∞,

then f ∈ L1(µ× λ).

3. If f ∈ L1(µ × λ), then fx ∈ L1(λ) for a.e.x ∈ X, f y ∈ L1(µ) for a.e. y ∈ Y ; the
functions φ and ψ, defined by 1 a.e. are in L1(µ) and L1(λ), respectively, and 1
holds.

Remark 3.10. The first and last integrals in 1 can also be written in the more usual
form ∫

X

dµ(x)

∫
Y

f(x, y) dλ(y) =

∫
Y

dλ(y)

∫
X

f(x, y) dµ(x) .

These are the so-called “iterated integrals” of f . The middle integral in 1 is often referred
to as a “double integral”.
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The combination of this theorem gives the following useful result: If f is (I ×J )-
measurable and if ∫

X

dµ(x)

∫
Y

|f(x, y)| dλ(y) <∞,

then the two iterated integrals are finite and equal.

Theorem 3.42 (Lebesgue Differentiation Theorem [1]). If f is locally integrable on Rd,
then for a.e. x ∈ Rd, we have

lim
h→0

1

|Bh(x)|

∫
Bh(x)

|f(x)− f(t)| dt = 0

and

lim
h→0

f̃h(x) = lim
h→0

1

|Bh(x)|

∫
Bh(x)

f(t) dt = f(x)

Theorem 3.43 (Fundamental Theorem of Calculus [1]). If f : a, b→ C, then T.F.A.E:

1. f ∈ AC[a, b]

2. There exists a function g ∈ L1[a, b] such that

f(x)− f(a) =

∫ x

a

g(t) dt , ∀x ∈ [a, b]

3. f is differentiable a.e. on [a, b], f ′ ∈ L1[a, b], and

f(x)− f(a) =

∫ x

a

f ′(t) dt , ∀x ∈ [a, b]

Theorem 3.44 (Fundamental Theorem of Calculus [2]). Let I = [a, b], let f : I → R1 be
continuous and nondecreasing. Each of the following three statements about f implies the
other two:

1. f is AC on I.

2. f maps sets of measure 0 to sets of measure 0

3. f is differentiable a.e. on I, f ′ ∈ L1, and

f(x)− f(a) =

∫ x

a

f ′(t) dt (a ≤ x ≤ b).

Theorem 3.45 (Radon-Nikodym Theorem [2]). Let µ be a positive σ-finite measure on
a σ-algebra M in a set X, and let λ be a complex measure on M.

1. There is a unique pair of complex measures λa and λs on M such that

λ = λa + λs, λa � µ, λs ⊥ µ.

If λ is positive and finite, then so are λa and λs.
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2. There is a unique h ∈ L1(µ) such that

λa(E) =

∫
E

h dµ

for every set E ∈M.

Remark 3.11. The pair (λa, λs) is called the Lebesgue decomposition of λ relative to
µ. It is a unique decomposition. The existence is the more important part of the first
part. The uniqueness of h is immediate. If h ∈ L1(µ), the integral in the theorem defines
a measure on M, which is absolutely continuous with respect to µ. The point is the
converse that λ � µ (in which case λa = λ) is obtained in this way. The function h is
called the Radon-Nikodym derivative of λa with respect to µ. We may also write in the
form dλa = h dµ, or even in the form h = dλa

dµ
.

3.5 Techniques
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