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1.1 What is game theory?

GAME THEORY aims to help us understand situations in which decision-makers
interact. A game in the everyday sense—“a competitive activity . . . in which

players contend with each other according to a set of rules”, in the words of my
dictionary—is an example of such a situation, but the scope of game theory is
vastly larger. Indeed, I devote very little space to games in the everyday sense;
my main focus is the use of game theory to illuminate economic, political, and
biological phenomena.

A list of some of the applications I discuss will give you an idea of the range
of situations to which game theory can be applied: firms competing for business,
political candidates competing for votes, jury members deciding on a verdict, ani-
mals fighting over prey, bidders competing in an auction, the evolution of siblings’
behavior towards each other, competing experts’ incentives to provide correct di-
agnoses, legislators’ voting behavior under pressure from interest groups, and the
role of threats and punishment in long-term relationships.

Like other sciences, game theory consists of a collection of models. A model
is an abstraction we use to understand our observations and experiences. What
“understanding” entails is not clear-cut. Partly, at least, it entails our perceiving
relationships between situations, isolating principles that apply to a range of prob-
lems, so that we can fit into our thinking new situations that we encounter. For
example, we may fit our observation of the path taken by a lobbed tennis ball into
a model that assumes the ball moves forward at a constant velocity and is pulled
towards the ground by the constant force of “gravity”. This model enhances our
understanding because it fits well no matter how hard or in which direction the
ball is hit, and applies also to the paths taken by baseballs, cricket balls, and a
wide variety of other missiles, launched in any direction.

A model is unlikely to help us understand a phenomenon if its assumptions are
wildly at odds with our observations. At the same time, a model derives power
from its simplicity; the assumptions upon which it rests should capture the essence
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2 Chapter 1. Introduction

of the situation, not irrelevant details. For example, when considering the path
taken by a lobbed tennis ball we should ignore the dependence of the force of
gravity on the distance of the ball from the surface of the earth.

Models cannot be judged by an absolute criterion: they are neither “right” nor
“wrong”. Whether a model is useful or not depends, in part, on the purpose for
which we use it. For example, when I determine the shortest route from Florence
to Venice, I do not worry about the projection of the map I am using; I work under
the assumption that the earth is flat. When I determine the shortest route from
Beijing to Havana, however, I pay close attention to the projection—I assume that
the earth is spherical. And were I to climb the Matterhorn I would assume that the
earth is neither flat nor spherical!

One reason for improving our understanding of the world is to enhance our
ability to mold it to our desires. The understanding that game theoretic models
give is particularly relevant in the social, political, and economic arenas. Studying
game theoretic models (or other models that apply to human interaction) may also
suggest ways in which our behavior may be modified to improve our own welfare.
By analyzing the incentives faced by negotiators locked in battle, for example, we
may see the advantages and disadvantages of various strategies.

The models of game theory are precise expressions of ideas that can be pre-
sented verbally. However, verbal descriptions tend to be long and imprecise; in
the interest of conciseness and precision, I frequently use mathematical symbols
when describing models. Although I use the language of mathematics, I use few
of its concepts; the ones I use are described in Chapter 17. My aim is to take ad-
vantage of the precision and conciseness of a mathematical formulation without
losing sight of the underlying ideas.

Game-theoretic modeling starts with an idea related to some aspect of the inter-
action of decision-makers. We express this idea precisely in a model, incorporating
features of the situation that appear to be relevant. This step is an art. We wish to
put enough ingredients into the model to obtain nontrivial insights, but not so
many that we are lead into irrelevant complications; we wish to lay bare the un-
derlying structure of the situation as opposed to describe its every detail. The next
step is to analyze the model—to discover its implications. At this stage we need to
adhere to the rigors of logic; we must not introduce extraneous considerations ab-
sent from the model. Our analysis may yield results that confirm our idea, or that
suggest it is wrong. If it is wrong, the analysis should help us to understand why
it is wrong. We may see that an assumption is inappropriate, or that an important
element is missing from the model; we may conclude that our idea is invalid, or
that we need to investigate it further by studying a different model. Thus, the in-
teraction between our ideas and models designed to shed light on them runs in
two directions: the implications of models help us determine whether our ideas
make sense, and these ideas, in the light of the implications of the models, may
show us how the assumptions of our models are inappropriate. In either case, the
process of formulating and analyzing a model should improve our understanding
of the situation we are considering.
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AN OUTLINE OF THE HISTORY OF GAME THEORY

Some game-theoretic ideas can be traced to the 18th century, but the major de-
velopment of the theory began in the 1920s with the work of the mathematician
Emile Borel (1871–1956) and the polymath John von Neumann (1903–57). A de-
cisive event in the development of the theory was the publication in 1944 of the
book Theory of games and economic behavior by von Neumann and Oskar Morgen-
stern. In the 1950s game-theoretic models began to be used in economic theory
and political science, and psychologists began studying how human subjects be-
have in experimental games. In the 1970s game theory was first used as a tool in
evolutionary biology. Subsequently, game theoretic methods have come to dom-
inate microeconomic theory and are used also in many other fields of economics
and a wide range of other social and behavioral sciences. The 1994 Nobel prize in
economics was awarded to the game theorists John C. Harsanyi (1920–2000), John
F. Nash (1928–), and Reinhard Selten (1930–).

JOHN VON NEUMANN

John von Neumann, the most important figure in the early development of game
theory, was born in Budapest, Hungary, in 1903. He displayed exceptional math-
ematical ability as a child (he had mastered calculus by the age of 8), but his fa-
ther, concerned about his son’s financial prospects, did not want him to become a
mathematician. As a compromise he enrolled in mathematics at the University of
Budapest in 1921, but immediately left to study chemistry, first at the University
of Berlin and subsequently at the Swiss Federal Institute of Technology in Zurich,
from which he earned a degree in chemical engineering in 1925. During his time in
Germany and Switzerland he returned to Budapest to write examinations, and in
1926 obtained a PhD in mathematics from the University of Budapest. He taught
in Berlin and Hamburg, and, from 1930 to 1933, at Princeton University. In 1933 he
became the youngest of the first six professors of the School of Mathematics at the
Institute for Advanced Study in Princeton (Einstein was another).

Von Neumann’s first published scientific paper appeared in 1922, when he was
19 years old. In 1928 he published a paper that establishes a key result on strictly
competitive games (a result that had eluded Borel). He made many major contribu-
tions in pure and applied mathematics and in physics—enough, according to Hal-
mos (1973), “for about three ordinary careers, in pure mathematics alone”. While
at the Institute for Advanced Study he collaborated with the Princeton economist
Oskar Morgenstern in writing Theory of games and economic behavior, the book that
established game theory as a field. In the 1940s he became increasingly involved
in applied work. In 1943 he became a consultant to the Manhattan project, which
was developing an atomic bomb. In 1944 he became involved with the develop-
ment of the first electronic computer, to which he made major contributions. He
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stayed at Princeton until 1954, when he became a member of the US Atomic Energy
Commission. He died in 1957.

1.2 The theory of rational choice

The theory of rational choice is a component of many models in game theory.
Briefly, this theory is that a decision-maker chooses the best action according to
her preferences, among all the actions available to her. No qualitative restriction
is placed on the decision-maker’s preferences; her “rationality” lies in the consis-
tency of her decisions when faced with different sets of available actions, not in the
nature of her likes and dislikes.

1.2.1 Actions

The theory is based on a model with two components: a set A consisting of all
the actions that, under some circumstances, are available to the decision-maker,
and a specification of the decision-maker’s preferences. In any given situation
the decision-maker is faced with a subset1 of A, from which she must choose a
single element. The decision-maker knows this subset of available choices, and
takes it as given; in particular, the subset is not influenced by the decision-maker’s
preferences. The set A could, for example, be the set of bundles of goods that
the decision-maker can possibly consume; given her income at any time, she is
restricted to choose from the subset of A containing the bundles she can afford.

1.2.2 Preferences and payoff functions

As to preferences, we assume that the decision-maker, when presented with any
pair of actions, knows which of the pair she prefers, or knows that she regards
both actions as equally desirable (is “indifferent between the actions”). We assume
further that these preferences are consistent in the sense that if the decision-maker
prefers the action a to the action b, and the action b to the action c, then she prefers
the action a to the action c. No other restriction is imposed on preferences. In par-
ticular, we do not rule out the possibility that a person’s preferences are altruistic
in the sense that how much she likes an outcome depends on some other person’s
welfare. Theories that use the model of rational choice aim to derive implications
that do not depend on any qualitative characteristic of preferences.

How can we describe a decision-maker’s preferences? One way is to specify,
for each possible pair of actions, the action the decision-maker prefers, or to note
that the decision-maker is indifferent between the actions. Alternatively we can
“represent” the preferences by a payoff function, which associates a number with
each action in such a way that actions with higher numbers are preferred. More

1See Chapter 17 for a description of mathematical terminology.
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precisely, the payoff function u represents a decision-maker’s preferences if, for
any actions a in A and b in A,

u(a) > u(b) if and only if the decision-maker prefers a to b. (5.1)

(A better name than payoff function might be “preference indicator function”;
in economic theory a payoff function that represents a consumer’s preferences is
often referred to as a “utility function”.)

EXAMPLE 5.2 (Payoff function representing preferences) A person is faced with
the choice of three vacation packages, to Havana, Paris, and Venice. She prefers
the package to Havana to the other two, which she regards as equivalent. Her
preferences between the three packages are represented by any payoff function
that assigns the same number to both Paris and Venice and a higher number to
Havana. For example, we can set u(Havana) = 1 and u(Paris) = u(Venice) =
0, or u(Havana) = 10 and u(Paris) = u(Venice) = 1, or u(Havana) = 0 and
u(Paris) = u(Venice) = −2.

? EXERCISE 5.3 (Altruistic preferences) Person 1 cares both about her income and
about person 2’s income. Precisely, the value she attaches to each unit of her own
income is the same as the value she attaches to any two units of person 2’s income.
How do her preferences order the outcomes (1, 4), (2, 1), and (3, 0), where the
first component in each case is person 1’s income and the second component is
person 2’s income? Give a payoff function consistent with these preferences.

A decision-maker’s preferences, in the sense used here, convey only ordinal
information. They may tell us that the decision-maker prefers the action a to the
action b to the action c, for example, but they do not tell us “how much” she prefers
a to b, or whether she prefers a to b “more” than she prefers b to c. Consequently
a payoff function that represents a decision-maker’s preferences also conveys only
ordinal information. It may be tempting to think that the payoff numbers attached
to actions by a payoff function convey intensity of preference—that if, for example,
a decision-maker’s preferences are represented by a payoff function u for which
u(a) = 0, u(b) = 1, and u(c) = 100, then the decision-maker likes c a lot more than
b but finds little difference between a and b. But a payoff function contains no such
information! The only conclusion we can draw from the fact that u(a) = 0, u(b) = 1,
and u(c) = 100 is that the decision-maker prefers c to b to a; her preferences are
represented equally well by the payoff function v for which v(a) = 0, v(b) = 100,
and v(c) = 101, for example, or any other function w for which w(a) < w(b) <

w(c).
From this discussion we see that a decision-maker’s preferences are represented

by many different payoff functions. Looking at the condition (5.1) under which the
payoff function u represents a decision-maker’s preferences, we see that if u rep-
resents a decision-maker’s preferences and the payoff function v assigns a higher
number to the action a than to the action b if and only if the payoff function u does
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so, then v also represents these preferences. Stated more compactly, if u represents
a decision-maker’s preferences and v is another payoff function for which

v(a) > v(b) if and only if u(a) > u(b)

then v also represents the decision-maker’s preferences. Or, more succinctly, if u
represents a decision-maker’s preferences then any increasing function of u also
represents these preferences.

? EXERCISE 6.1 (Alternative representations of preferences) A decision-maker’s pref-
erences over the set A = {a, b, c} are represented by the payoff function u for which
u(a) = 0, u(b) = 1, and u(c) = 4. Are they also represented by the function v for
which v(a) = −1, v(b) = 0, and v(c) = 2? How about the function w for which
w(a) = w(b) = 0 and w(c) = 8?

Sometimes it is natural to formulate a model in terms of preferences and then
find payoff functions that represent these preferences. In other cases it is natural
to start with payoff functions, even if the analysis depends only on the underlying
preferences, not on the specific representation we choose.

1.2.3 The theory of rational choice

The theory of rational choice is that in any given situation the decision-maker
chooses the member of the available subset of A that is best according to her pref-
erences. Allowing for the possibility that there are several equally attractive best
actions, the theory of rational choice is:

the action chosen by a decision-maker is at least as good, according to her
preferences, as every other available action.

For any action, we can design preferences with the property that no other action
is preferred. Thus if we have no information about a decision-maker’s preferences,
and make no assumptions about their character, any single action is consistent with
the theory. However, if we assume that a decision-maker who is indifferent be-
tween two actions sometimes chooses one action and sometimes the other, not ev-
ery collection of choices for different sets of available actions is consistent with the
theory. Suppose, for example, we observe that a decision-maker chooses a when-
ever she faces the set {a, b}, but sometimes chooses b when facing the set {a, b, c}.
The fact that she always chooses a when faced with {a, b} means that she prefers
a to b (if she were indifferent then she would sometimes choose b). But then when
she faces the set {a, b, c} she must choose either a or c, never b. Thus her choices
are inconsistent with the theory. (More concretely, if you choose the same dish
from the menu of your favorite lunch spot whenever there are no specials then,
regardless of your preferences, it is inconsistent for you to choose some other item
from the menu on a day when there is an off-menu special.)

If you have studied the standard economic theories of the consumer and the
firm, you have encountered the theory of rational choice before. In the economic
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theory of the consumer, for example, the set of available actions is the set of all
bundles of goods that the consumer can afford. In the theory of the firm, the set of
available actions is the set of all input-output vectors, and the action a is preferred
to the action b if and only if a yields a higher profit than does b.

1.2.4 Discussion

The theory of rational choice is enormously successful; it is a component of count-
less models that enhance our understanding of social phenomena. It pervades
economic theory to such an extent that arguments are classified as “economic” as
much because they apply the theory of rational choice as because they involve
particularly “economic” variables.

Nevertheless, under some circumstances its implications are at variance with
observations of human decision-making. To take a small example, adding an un-
desirable action to a set of actions sometimes significantly changes the action cho-
sen (see Rabin 1998, 38). The significance of such discordance with the theory
depends upon the phenomenon being studied. If we are considering how the
markup of price over cost in an industry depends on the number of firms, for
example, this sort of weakness in the theory may be unimportant. But if we are
studying how advertising, designed specifically to influence peoples’ preferences,
affects consumers’ choices, then the inadequacies of the model of rational choice
may be crucial.

No general theory currently challenges the supremacy of rational choice the-
ory. But you should bear in mind as you read this book that the model of choice
that underlies most of the theories has its limits; some of the phenomena that you
may think of explaining using a game theoretic model may lie beyond these lim-
its. As always, the proof of the pudding is in the eating: if a model enhances our
understanding of the world, then it serves its purpose.

1.3 Coming attractions

Part I presents the main models in game theory: a strategic game, an extensive
game, and a coalitional game. These models differ in two dimensions. A strategic
game and an extensive game focus on the actions of individuals, whereas a coali-
tional game focuses on the outcomes that can be achieved by groups of individ-
uals; a strategic game and a coalitional game consider situations in which actions
are chosen once and for all, whereas an extensive game allows for the possibility
that plans may be revised as they are carried out.

The model, consisting of actions and preferences, to which rational choice the-
ory is applied is tailor-made for the theory; if we want to develop another theory,
we need to add elements to the model in addition to actions and preferences. The
same is not true of most models in game theory: strategic interaction is sufficiently
complex that even a relatively simple model can admit more than one theory of
the outcome. We refer to a theory that specifies a set of outcomes for a model as a
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2.1 Strategic games

ASTRATEGIC GAME is a model of interacting decision-makers. In recognition
of the interaction, we refer to the decision-makers as players. Each player

has a set of possible actions. The model captures interaction between the players
by allowing each player to be affected by the actions of all players, not only her
own action. Specifically, each player has preferences about the action profile—the
list of all the players’ actions. (See Section 17.5, in the mathematical appendix, for
a discussion of profiles.)

More precisely, a strategic game is defined as follows. (The qualification “with
ordinal preferences” distinguishes this notion of a strategic game from a more
general notion studied in Chapter 4.)

� DEFINITION 11.1 (Strategic game with ordinal preferences) A strategic game (with
ordinal preferences) consists of

• a set of players

• for each player, a set of actions

• for each player, preferences over the set of action profiles.

A very wide range of situations may be modeled as strategic games. For exam-
ple, the players may be firms, the actions prices, and the preferences a reflection of
the firms’ profits. Or the players may be candidates for political office, the actions

11



12 Chapter 2. Nash Equilibrium: Theory

campaign expenditures, and the preferences a reflection of the candidates’ proba-
bilities of winning. Or the players may be animals fighting over some prey, the ac-
tions concession times, and the preferences a reflection of whether an animal wins
or loses. In this chapter I describe some simple games designed to capture funda-
mental conflicts present in a variety of situations. The next chapter is devoted to
more detailed applications to specific phenomena.

As in the model of rational choice by a single decision-maker (Section 1.2), it is
frequently convenient to specify the players’ preferences by giving payoff functions
that represent them. Bear in mind that these payoffs have only ordinal significance.
If a player’s payoffs to the action profiles a, b, and c are 1, 2, and 10, for example,
the only conclusion we can draw is that the player prefers c to b and b to a; the
numbers do not imply that the player’s preference between c and b is stronger
than her preference between a and b.

Time is absent from the model. The idea is that each player chooses her ac-
tion once and for all, and the players choose their actions “simultaneously” in the
sense that no player is informed, when she chooses her action, of the action chosen
by any other player. (For this reason, a strategic game is sometimes referred to
as a “simultaneous move game”.) Nevertheless, an action may involve activities
that extend over time, and may take into account an unlimited number of contin-
gencies. An action might specify, for example, “if company X’s stock falls below
$10, buy 100 shares; otherwise, do not buy any shares”. (For this reason, an action
is sometimes called a “strategy”.) However, the fact that time is absent from the
model means that when analyzing a situation as a strategic game, we abstract from
the complications that may arise if a player is allowed to change her plan as events
unfold: we assume that actions are chosen once and for all.

2.2 Example: the Prisoner’s Dilemma

One of the most well-known strategic games is the Prisoner’s Dilemma. Its name
comes from a story involving suspects in a crime; its importance comes from the
huge variety of situations in which the participants face incentives similar to those
faced by the suspects in the story.

EXAMPLE 12.1 (Prisoner’s Dilemma) Two suspects in a major crime are held in
separate cells. There is enough evidence to convict each of them of a minor offense,
but not enough evidence to convict either of them of the major crime unless one of
them acts as an informer against the other (finks). If they both stay quiet, each will
be convicted of the minor offense and spend one year in prison. If one and only
one of them finks, she will be freed and used as a witness against the other, who
will spend four years in prison. If they both fink, each will spend three years in
prison.

This situation may be modeled as a strategic game:

Players The two suspects.

Actions Each player’s set of actions is {Quiet, Fink}.
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Preferences Suspect 1’s ordering of the action profiles, from best to worst, is
(Fink, Quiet) (she finks and suspect 2 remains quiet, so she is freed), (Quiet,
Quiet) (she gets one year in prison), (Fink, Fink) (she gets three years in prison),
(Quiet, Fink) (she gets four years in prison). Suspect 2’s ordering is (Quiet, Fink),
(Quiet, Quiet), (Fink, Fink), (Fink, Quiet).

We can represent the game compactly in a table. First choose payoff functions
that represent the suspects’ preference orderings. For suspect 1 we need a function
u1 for which

u1(Fink, Quiet) > u1(Quiet, Quiet) > u1(Fink, Fink) > u1(Quiet, Fink).

A simple specification is u1(Fink, Quiet) = 3, u1(Quiet, Quiet) = 2, u1(Fink, Fink) =
1, and u1(Quiet, Fink) = 0. For suspect 2 we can similarly choose the function
u2 for which u2(Quiet, Fink) = 3, u2(Quiet, Quiet) = 2, u2(Fink, Fink) = 1, and
u2(Fink, Quiet) = 0. Using these representations, the game is illustrated in Fig-
ure 13.1. In this figure the two rows correspond to the two possible actions of
player 1, the two columns correspond to the two possible actions of player 2, and
the numbers in each box are the players’ payoffs to the action profile to which the
box corresponds, with player 1’s payoff listed first.

Suspect 1

Suspect 2
Quiet Fink

Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 13.1 The Prisoner’s Dilemma (Example 12.1).

The Prisoner’s Dilemma models a situation in which there are gains from coop-
eration (each player prefers that both players choose Quiet than they both choose
Fink) but each player has an incentive to “free ride” (choose Fink) whatever the
other player does. The game is important not because we are interested in under-
standing the incentives for prisoners to confess, but because many other situations
have similar structures. Whenever each of two players has two actions, say C
(corresponding to Quiet) and D (corresponding to Fink), player 1 prefers (D, C) to
(C, C) to (D, D) to (C, D), and player 2 prefers (C, D) to (C, C) to (D, D) to (D, C),
the Prisoner’s Dilemma models the situation that the players face. Some examples
follow.

2.2.1 Working on a joint project

You are working with a friend on a joint project. Each of you can either work hard
or goof off. If your friend works hard then you prefer to goof off (the outcome of
the project would be better if you worked hard too, but the increment in its value
to you is not worth the extra effort). You prefer the outcome of your both working
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hard to the outcome of your both goofing off (in which case nothing gets accom-
plished), and the worst outcome for you is that you work hard and your friend
goofs off (you hate to be “exploited”). If your friend has the same preferences then
the game that models the situation you face is given in Figure 14.1, which, as you
can see, differs from the Prisoner’s Dilemma only in the names of the actions.

Work hard Goof off
Work hard 2, 2 0, 3

Goof off 3, 0 1, 1

Figure 14.1 Working on a joint project.

I am not claiming that a situation in which two people pursue a joint project
necessarily has the structure of the Prisoner’s Dilemma, only that the players’ pref-
erences in such a situation may be the same as in the Prisoner’s Dilemma! If, for
example, each person prefers to work hard than to goof off when the other person
works hard, then the Prisoner’s Dilemma does not model the situation: the players’
preferences are different from those given in Figure 14.1.

? EXERCISE 14.1 (Working on a joint project) Formulate a strategic game that models
a situation in which two people work on a joint project in the case that their pref-
erences are the same as those in the game in Figure 14.1 except that each person
prefers to work hard than to goof off when the other person works hard. Present
your game in a table like the one in Figure 14.1.

2.2.2 Duopoly

In a simple model of a duopoly, two firms produce the same good, for which each
firm charges either a low price or a high price. Each firm wants to achieve the
highest possible profit. If both firms choose High then each earns a profit of $1000.
If one firm chooses High and the other chooses Low then the firm choosing High
obtains no customers and makes a loss of $200, whereas the firm choosing Low
earns a profit of $1200 (its unit profit is low, but its volume is high). If both firms
choose Low then each earns a profit of $600. Each firm cares only about its profit,
so we can represent its preferences by the profit it obtains, yielding the game in
Figure 14.2.

High Low
High 1000, 1000 −200, 1200
Low 1200, −200 600, 600

Figure 14.2 A simple model of a price-setting duopoly.

Bearing in mind that what matters are the players’ preferences, not the partic-
ular payoff functions that we use to represent them, we see that this game, like the
previous one, differs from the Prisoner’s Dilemma only in the names of the actions.
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The action High plays the role of Quiet, and the action Low plays the role of Fink;
firm 1 prefers (Low, High) to (High, High) to (Low, Low) to (High, Low), and firm 2
prefers (High, Low) to (High, High) to (Low, Low) to (Low, High).

As in the previous example, I do not claim that the incentives in a duopoly are
necessarily those in the Prisoner’s Dilemma; different assumptions about the relative
sizes of the profits in the four cases generate a different game. Further, in this case
one of the abstractions incorporated into the model—that each firm has only two
prices to choose between—may not be harmless; if the firms may choose among
many prices then the structure of the interaction may change. (A richer model is
studied in Section 3.2.)

2.2.3 The arms race

Under some assumptions about the countries’ preferences, an arms race can be
modeled as the Prisoner’s Dilemma. (Because the Prisoner’s Dilemma was first stud-
ied in the early 1950s, when the USA and USSR were involved in a nuclear arms
race, you might suspect that US nuclear strategy was influenced by game theory;
the evidence suggests that it was not.) Assume that each country can build an
arsenal of nuclear bombs, or can refrain from doing so. Assume also that each
country’s favorite outcome is that it has bombs and the other country does not; the
next best outcome is that neither country has any bombs; the next best outcome is
that both countries have bombs (what matters is relative strength, and bombs are
costly to build); and the worst outcome is that only the other country has bombs.
In this case the situation is modeled by the Prisoner’s Dilemma, in which the action
Don’t build bombs corresponds to Quiet in Figure 13.1 and the action Build bombs
corresponds to Fink. However, once again the assumptions about preferences nec-
essary for the Prisoner’s Dilemma to model the situation may not be satisfied: a
country may prefer not to build bombs if the other country does not, for example
(bomb-building may be very costly), in which case the situation is modeled by a
different game.

2.2.4 Common property

Two farmers are deciding how much to allow their sheep to graze on the village
common. Each farmer prefers that her sheep graze a lot than a little, regardless of
the other farmer’s action, but prefers that both farmers’ sheep graze a little than
both farmers’ sheep graze a lot (in which case the common is ruined for future
use). Under these assumptions the game is the Prisoner’s Dilemma. (A richer model
is studied in Section 3.1.5.)

2.2.5 Other situations modeled as the Prisoner’s Dilemma

A huge number of other situations have been modeled as the Prisoner’s Dilemma,
from mating hermaphroditic fish to tariff wars between countries.
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? EXERCISE 16.1 (Hermaphroditic fish) Members of some species of hermaphroditic
fish choose, in each mating encounter, whether to play the role of a male or a
female. Each fish has a preferred role, which uses up fewer resources and hence
allows more future mating. A fish obtains a payoff of H if it mates in its preferred
role and L if it mates in the other role, where H > L. (Payoffs are measured in
terms of number of offspring, which fish are evolved to maximize.) Consider an
encounter between two fish whose preferred roles are the same. Each fish has two
possible actions: mate in either role, and insist on its preferred role. If both fish
offer to mate in either role, the roles are assigned randomly, and each fish’s payoff
is 1

2 (H + L) (the average of H and L). If each fish insists on its preferred role, the
fish do not mate; each goes off in search of another partner, and obtains the payoff
S. The higher the chance of meeting another partner, the larger is S. Formulate this
situation as a strategic game and determine the range of values of S, for any given
values of H and L, for which the game differs from the Prisoner’s Dilemma only in
the names of the actions.

2.3 Example: Bach or Stravinsky?

In the Prisoner’s Dilemma the main issue is whether or not the players will cooperate
(choose Quiet). In the following game the players agree that it is better to cooperate
than not to cooperate, but disagree about the best outcome.

EXAMPLE 16.2 (Bach or Stravinsky?) Two people wish to go out together. Two con-
certs are available: one of music by Bach, and one of music by Stravinsky. One per-
son prefers Bach and the other prefers Stravinsky. If they go to different concerts,
each of them is equally unhappy listening to the music of either composer.

We can model this situation as the two-player strategic game in Figure 16.1,
in which the person who prefers Bach chooses a row and the person who prefers
Stravinsky chooses a column.

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Figure 16.1 Bach or Stravinsky? (BoS) (Example 16.2).

This game is also referred to as the “Battle of the Sexes” (though the conflict it
models surely occurs no more frequently between people of the opposite sex than
it does between people of the same sex). I refer to the games as BoS, an acronym
that fits both names. (I assume that each player is indifferent between listening
to Bach and listening to Stravinsky when she is alone only for consistency with
the standard specification of the game. As we shall see, the analysis of the game
remains the same in the absence of this assumption.)

Like the Prisoner’s Dilemma, BoS models a wide variety of situations. Consider,
for example, two officials of a political party deciding the stand to take on an issue.
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Suppose that they disagree about the best stand, but are both better off if they take
the same stand than if they take different stands; both cases in which they take
different stands, in which case voters do not know what to think, are equally bad.
Then BoS captures the situation they face. Or consider two merging firms that
currently use different computer technologies. As two divisions of a single firm
they will both be better off if they both use the same technology; each firm prefers
that the common technology be the one it used in the past. BoS models the choices
the firms face.

2.4 Example: Matching Pennies

Aspects of both conflict and cooperation are present in both the Prisoner’s Dilemma
and BoS. The next game is purely conflictual.

EXAMPLE 17.1 (Matching Pennies) Two people choose, simultaneously, whether
to show the Head or the Tail of a coin. If they show the same side, person 2 pays
person 1 a dollar; if they show different sides, person 1 pays person 2 a dollar. Each
person cares only about the amount of money she receives, and (naturally!) prefers
to receive more than less. A strategic game that models this situation is shown
in Figure 17.1. (In this representation of the players’ preferences, the payoffs are
equal to the amounts of money involved. We could equally well work with another
representation—for example, 2 could replace each 1, and 1 could replace each −1.)

Head Tail
Head 1, −1 −1, 1

Tail −1, 1 1, −1

Figure 17.1 Matching Pennies (Example 17.1).

In this game the players’ interests are diametrically opposed (such a game is
called “strictly competitive”): player 1 wants to take the same action as the other
player, whereas player 2 wants to take the opposite action.

This game may, for example, model the choices of appearances for new prod-
ucts by an established producer and a new firm in a market of fixed size. Suppose
that each firm can choose one of two different appearances for the product. The
established producer prefers the newcomer’s product to look different from its
own (so that its customers will not be tempted to buy the newcomer’s product),
whereas the newcomer prefers that the products look alike. Or the game could
model a relationship between two people in which one person wants to be like the
other, whereas the other wants to be different.

? EXERCISE 17.2 (Games without conflict) Give some examples of two-player strate-
gic games in which each player has two actions and the players have the same pref-
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erences, so that there is no conflict between their interests. (Present your games as
tables like the one in Figure 17.1.)

2.5 Example: the Stag Hunt

A sentence in Discourse on the origin and foundations of inequality among men (1755)
by the philosopher Jean-Jacques Rousseau discusses a group of hunters who wish
to catch a stag. They will succeed if they all remain sufficiently attentive, but each
is tempted to desert her post and catch a hare. One interpretation of the sentence is
that the interaction between the hunters may be modeled as the following strategic
game.

EXAMPLE 18.1 (Stag Hunt) Each of a group of hunters has two options: she may
remain attentive to the pursuit of a stag, or catch a hare. If all hunters pursue the
stag, they catch it and share it equally; if any hunter devotes her energy to catching
a hare, the stag escapes, and the hare belongs to the defecting hunter alone. Each
hunter prefers a share of the stag to a hare.

The strategic game that corresponds to this specification is:

Players The hunters.

Actions Each player’s set of actions is {Stag, Hare}.

Preferences For each player, the action profile in which all players choose Stag
(resulting in her obtaining a share of the stag) is ranked highest, followed
by any profile in which she chooses Hare (resulting in her obtaining a hare),
followed by any profile in which she chooses Stag and one or more of the
other players chooses Hare (resulting in her leaving empty-handed).

Like other games with many players, this game cannot easily be presented in a
table like that in Figure 17.1. For the case in which there are two hunters, the game
is shown in Figure 18.1.

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

Figure 18.1 The Stag Hunt (Example 18.1) for the case of two hunters.

The variant of the two-player Stag Hunt shown in Figure 19.1 has been sug-
gested as an alternative to the Prisoner’s Dilemma as a model of an arms race, or,
more generally, of the “security dilemma” faced by a pair of countries. The game
differs from the Prisoner’s Dilemma in that a country prefers the outcome in which
both countries refrain from arming themselves to the one in which it alone arms
itself: the cost of arming outweighs the benefit if the other country does not arm
itself.
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Refrain Arm
Refrain 3, 3 0, 2

Arm 2, 0 1, 1

Figure 19.1 A variant of the two-player Stag Hunt that models the “security dilemma”.

2.6 Nash equilibrium

What actions will be chosen by the players in a strategic game? We wish to assume,
as in the theory of a rational decision-maker (Section 1.2), that each player chooses
the best available action. In a game, the best action for any given player depends,
in general, on the other players’ actions. So when choosing an action a player must
have in mind the actions the other players will choose. That is, she must form a
belief about the other players’ actions.

On what basis can such a belief be formed? The assumption underlying the
analysis in this chapter and the next two chapters is that each player’s belief is
derived from her past experience playing the game, and that this experience is suf-
ficiently extensive that she knows how her opponents will behave. No one tells her
the actions her opponents will choose, but her previous involvement in the game
leads her to be sure of these actions. (The question of how a player’s experience can
lead her to the correct beliefs about the other players’ actions is addressed briefly
in Section 4.9.)

Although we assume that each player has experience playing the game, we
assume that she views each play of the game in isolation. She does not become
familiar with the behavior of specific opponents and consequently does not condi-
tion her action on the opponent she faces; nor does she expect her current action to
affect the other players’ future behavior.

It is helpful to think of the following idealized circumstances. For each player in
the game there is a population of many decision-makers who may, on any occasion,
take that player’s role. In each play of the game, players are selected randomly, one
from each population. Thus each player engages in the game repeatedly, against
ever-varying opponents. Her experience leads her to beliefs about the actions of
“typical” opponents, not any specific set of opponents.

As an example, think of the interaction between buyers and sellers. Buyers and
sellers repeatedly interact, but to a first approximation many of the pairings may
be modeled as random. In many cases a buyer transacts only once with any given
seller, or interacts repeatedly but anonymously (when the seller is a large store, for
example).

In summary, the solution theory we study has two components. First, each
player chooses her action according to the model of rational choice, given her be-
lief about the other players’ actions. Second, every player’s belief about the other
players’ actions is correct. These two components are embodied in the following
definition.
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JOHN F. NASH, JR.

A few of the ideas of John F. Nash Jr., developed while he was a graduate student
at Princeton from 1948 to 1950, transformed game theory. Nash was born in 1928 in
Bluefield, West Virginia, USA, where he grew up. He was an undergraduate math-
ematics major at Carnegie Institute of Technology from 1945 to 1948. In 1948 he
obtained both a B.S. and an M.S., and began graduate work in the Department of
Mathematics at Princeton University. (One of his letters of recommendation, from
a professor at Carnegie Institute of Technology, was a single sentence: “This man is
a genius” (Kuhn et al. 1995, 282).) A paper containing the main result of his thesis
was submitted to the Proceedings of the National Academy of Sciences in November
1949, fourteen months after he started his graduate work. (“A fine goal to set . . .
graduate students”, to quote Kuhn! (See Kuhn et al. 1995, 282.)) He completed his
PhD the following year, graduating on his 22nd birthday. His thesis, 28 pages in
length, introduces the equilibrium notion now known as “Nash equilibrium” and
delineates a class of strategic games that have Nash equilibria (Proposition 116.1
in this book). The notion of Nash equilibrium vastly expanded the scope of game
theory, which had previously focussed on two-player “strictly competitive” games
(in which the players’ interests are directly opposed). While a graduate student at
Princeton, Nash also wrote the seminal paper in bargaining theory, Nash (1950b)
(the ideas of which originated in an elective class in international economics he
took as an undergraduate). He went on to take an academic position in the Depart-
ment of Mathematics at MIT, where he produced “a remarkable series of papers”
(Milnor 1995, 15); he has been described as “one of the most original mathematical
minds of [the twentieth] century” (Kuhn 1996). He shared the 1994 Nobel prize in
economics with the game theorists John C. Harsanyi and Reinhard Selten.

A Nash equilibrium is an action profile a∗ with the property that no
player i can do better by choosing an action different from a∗i , given
that every other player j adheres to a∗j .

In the idealized setting in which the players in any given play of the game are
drawn randomly from a collection of populations, a Nash equilibrium corresponds
to a steady state. If, whenever the game is played, the action profile is the same Nash
equilibrium a∗, then no player has a reason to choose any action different from her
component of a∗; there is no pressure on the action profile to change. Expressed
differently, a Nash equilibrium embodies a stable “social norm”: if everyone else
adheres to it, no individual wishes to deviate from it.

The second component of the theory of Nash equilibrium—that the players’ be-
liefs about each other’s actions are correct—implies, in particular, that two players’
beliefs about a third player’s action are the same. For this reason, the condition is
sometimes said to be that the players’ “expectations are coordinated”.

The situations to which we wish to apply the theory of Nash equilibrium do
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not in general correspond exactly to the idealized setting described above. For
example, in some cases the players do not have much experience with the game;
in others they do not view each play of the game in isolation. Whether or not
the notion of Nash equilibrium is appropriate in any given situation is a matter of
judgment. In some cases, a poor fit with the idealized setting may be mitigated
by other considerations. For example, inexperienced players may be able to draw
conclusions about their opponents’ likely actions from their experience in other
situations, or from other sources. (One aspect of such reasoning is discussed in the
box on page 30). Ultimately, the test of the appropriateness of the notion of Nash
equilibrium is whether it gives us insights into the problem at hand.

With the aid of an additional piece of notation, we can state the definition of
a Nash equilibrium precisely. Let a be an action profile, in which the action of
each player i is ai. Let a′i be any action of player i (either equal to ai, or different
from it). Then (a′i , a−i) denotes the action profile in which every player j except
i chooses her action aj as specified by a, whereas player i chooses a′i. (The −i
subscript on a stands for “except i”.) That is, (a′i , a−i) is the action profile in which
all the players other than i adhere to a while i “deviates” to a′i. (If a′i = ai then
of course (a′i , a−i) = (ai, a−i) = a.) If there are three players, for example, then
(a′2, a−2) is the action profile in which players 1 and 3 adhere to a (player 1 chooses
a1, player 3 chooses a3) and player 2 deviates to a′2.

Using this notation, we can restate the condition for an action profile a∗ to be a
Nash equilibrium: no player i has any action ai for which she prefers (ai, a∗−i) to a∗.
Equivalently, for every player i and every action ai of player i, the action profile a∗

is at least as good for player i as the action profile (ai , a∗−i).

� DEFINITION 21.1 (Nash equilibrium of strategic game with ordinal preferences) The
action profile a∗ in a strategic game with ordinal preferences is a Nash equilibrium
if, for every player i and every action ai of player i, a∗ is at least as good according
to player i’s preferences as the action profile (ai , a∗−i) in which player i chooses ai
while every other player j chooses a∗j . Equivalently, for every player i,

ui(a∗) ≥ ui(ai , a∗−i) for every action ai of player i, (21.2)

where ui is a payoff function that represents player i’s preferences.

This definition implies neither that a strategic game necessarily has a Nash
equilibrium, nor that it has at most one. Examples in the next section show that
some games have a single Nash equilibrium, some possess no Nash equilibrium,
and others have many Nash equilibria.

The definition of a Nash equilibrium is designed to model a steady state among
experienced players. An alternative approach to understanding players’ actions in
strategic games assumes that the players know each others’ preferences, and con-
siders what each player can deduce about the other players’ actions from their
rationality and their knowledge of each other’s rationality. This approach is stud-
ied in Chapter 12. For many games, it leads to a conclusion different from that of
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Nash equilibrium. For games in which the conclusion is the same the approach
offers us an alternative interpretation of a Nash equilibrium, as the outcome of ra-
tional calculations by players who do not necessarily have any experience playing
the game.

STUDYING NASH EQUILIBRIUM EXPERIMENTALLY

The theory of strategic games lends itself to experimental study: arranging for sub-
jects to play games and observing their choices is relatively straightforward. A few
years after game theory was launched by von Neumann and Morgenstern’s (1944)
book, reports of laboratory experiments began to appear. Subsequently a huge
number of experiments have been conducted, illuminating many issues relevant
to the theory. I discuss selected experimental evidence throughout the book.

The theory of Nash equilibrium, as we have seen, has two components: the
players act in accordance with the theory of rational choice, given their beliefs
about the other players’ actions, and these beliefs are correct. If every subject
understands the game she is playing and faces incentives that correspond to the
preferences of the player whose role she is taking, then a divergence between the
observed outcome and a Nash equilibrium can be blamed on a failure of one or
both of these two components. Experimental evidence has the potential of indi-
cating the types of games for which the theory works well and, for those in which
the theory does not work well, of pointing to the faulty component and giving us
hints about the characteristics of a better theory. In designing an experiment that
cleanly tests the theory, however, we need to confront several issues.

The model of rational choice takes preferences as given. Thus to test the theory
of Nash equilibrium experimentally, we need to ensure that each subject’s prefer-
ences are those of the player whose role she is taking in the game we are exam-
ining. The standard way of inducing the appropriate preferences is to pay each
subject an amount of money directly related to the payoff given by a payoff func-
tion that represents the preferences of the player whose role the subject is taking.
Such remuneration works if each subject likes money and cares only about the
amount of money she receives, ignoring the amounts received by her opponents.
The assumption that people like receiving money is reasonable in many cultures,
but the assumption that people care only about their own monetary rewards—
are “selfish”—may, in some contexts at least, not be reasonable. Unless we check
whether our subjects are selfish in the context of our experiment, we will jointly test
two hypotheses: that humans are selfish—a hypothesis not part of game theory—
and that the notion of Nash equilibrium models their behavior. In some cases we
may indeed wish to test these hypotheses jointly. But in order to test the theory of
Nash equilibrium alone we need to ensure that we induce the preferences we wish
to study.

Assuming that better decisions require more effort, we need also to ensure that
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each subject finds it worthwhile to put in the extra effort required to obtain a higher
payoff. If we rely on monetary payments to provide incentives, the amount of
money a subject can obtain must be sufficiently sensitive to the quality of her deci-
sions to compensate her for the effort she expends (paying a flat fee, for example,
is inappropriate). In some cases, monetary payments may not be necessary: under
some circumstances, subjects drawn from a highly competitive culture like that of
the USA may be sufficiently motivated by the possibility of obtaining a high score,
even if that score does not translate into a monetary payoff.

The notion of Nash equilibrium models action profiles compatible with steady
states. Thus to study the theory experimentally we need to collect observations of
subjects’ behavior when they have experience playing the game. But they should
not have obtained that experience while knowingly facing the same opponents
repeatedly, for the theory assumes that the players consider each play of the game
in isolation, not as part of an ongoing relationship. One option is to have each
subject play the game against many different opponents, gaining experience about
how the other subjects on average play the game, but not about the choices of any
other given player. Another option is to describe the game in terms that relate to
a situation in which the subjects already have experience. A difficulty with this
second approach is that the description we give may connote more than simply
the payoff numbers of our game. If we describe the Prisoner’s Dilemma in terms
of cooperation on a joint project, for example, a subject may be biased toward
choosing the action she has found appropriate when involved in joint projects,
even if the structures of those interactions were significantly different from that of
the Prisoner’s Dilemma. As she plays the experimental game repeatedly she may
come to appreciate how it differs from the games in which she has been involved
previously, but her biases may disappear only slowly.

Whatever route we take to collect data on the choices of subjects experienced
in playing the game, we confront a difficult issue: how do we know when the
outcome has converged? Nash’s theory concerns only equilibria; it has nothing to
say about the path players’ choices will take on the way to an equilibrium, and so
gives us no guide as to whether 10, 100, or 1,000 plays of the game are enough to
give a chance for the subjects’ expectations to become coordinated.

Finally, we can expect the theory of Nash equilibrium to correspond to reality
only approximately: like all useful theories, it definitely is not exactly correct. How
do we tell whether the data are close enough to the theory to support it? One pos-
sibility is to compare the theory of Nash equilibrium with some other theory. But
for many games there is no obvious alternative theory—and certainly not one with
the generality of Nash equilibrium. Statistical tests can sometimes aid in deciding
whether the data is consistent with the theory, though ultimately we remain the
judge of whether or not our observations persuade us that the theory enhances
our understanding of human behavior in the game.
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2.7 Examples of Nash equilibrium

2.7.1 Prisoner’s Dilemma

By examining the four possible pairs of actions in the Prisoner’s Dilemma (repro-
duced in Figure 24.1), we see that (Fink, Fink) is the unique Nash equilibrium.

Quiet Fink
Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 24.1 The Prisoner’s Dilemma.

The action pair (Fink, Fink) is a Nash equilibrium because (i) given that player 2
chooses Fink, player 1 is better off choosing Fink than Quiet (looking at the right
column of the table we see that Fink yields player 1 a payoff of 1 whereas Quiet
yields her a payoff of 0), and (ii) given that player 1 chooses Fink, player 2 is better
off choosing Fink than Quiet (looking at the bottom row of the table we see that
Fink yields player 2 a payoff of 1 whereas Quiet yields her a payoff of 0).

No other action profile is a Nash equilibrium:

• (Quiet, Quiet) does not satisfy (21.2) because when player 2 chooses Quiet,
player 1’s payoff to Fink exceeds her payoff to Quiet (look at the first compo-
nents of the entries in the left column of the table). (Further, when player 1
chooses Quiet, player 2’s payoff to Fink exceeds her payoff to Quiet: player 2,
as well as player 1, wants to deviate. To show that a pair of actions is not a
Nash equilibrium, however, it is not necessary to study player 2’s decision
once we have established that player 1 wants to deviate: it is enough to show
that one player wishes to deviate to show that a pair of actions is not a Nash
equilibrium.)

• (Fink, Quiet) does not satisfy (21.2) because when player 1 chooses Fink, player 2’s
payoff to Fink exceeds her payoff to Quiet (look at the second components of
the entries in the bottom row of the table).

• (Quiet, Fink) does not satisfy (21.2) because when player 2 chooses Fink, player 1’s
payoff to Fink exceeds her payoff to Quiet (look at the first components of the
entries in the right column of the table).

In summary, in the only Nash equilibrium of the Prisoner’s Dilemma both play-
ers choose Fink. In particular, the incentive to free ride eliminates the possibility
that the mutually desirable outcome (Quiet, Quiet) occurs. In the other situations
discussed in Section 2.2 that may be modeled as the Prisoner’s Dilemma, the out-
comes predicted by the notion of Nash equilibrium are thus as follows: both peo-
ple goof off when working on a joint project; both duopolists charge a low price;
both countries build bombs; both farmers graze their sheep a lot. (The overgrazing
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of a common thus predicted is sometimes called the “tragedy of the commons”.
The intuition that some of these dismal outcomes may be avoided if the same pair
of people play the game repeatedly is explored in Chapter 14.)

In the Prisoner’s Dilemma, the Nash equilibrium action of each player (Fink) is
the best action for each player not only if the other player chooses her equilib-
rium action (Fink), but also if she chooses her other action (Quiet). The action pair
(Fink, Fink) is a Nash equilibrium because if a player believes that her opponent
will choose Fink then it is optimal for her to choose Fink. But in fact it is optimal for
a player to choose Fink regardless of the action she expects her opponent to choose.
In most of the games we study, a player’s Nash equilibrium action does not sat-
isfy this condition: the action is optimal if the other players choose their Nash
equilibrium actions, but some other action is optimal if the other players choose
non-equilibrium actions.

? EXERCISE 25.1 (Altruistic players in the Prisoner’s Dilemma) Each of two players
has two possible actions, Quiet and Fink; each action pair results in the players’
receiving amounts of money equal to the numbers corresponding to that action
pair in Figure 24.1. (For example, if player 1 chooses Quiet and player 2 chooses
Fink, then player 1 receives nothing, whereas player 2 receives $3.) The players are
not “selfish”; rather, the preferences of each player i are represented by the payoff
function mi(a) + αmj(a), where mi(a) is the amount of money received by player i
when the action profile is a, j is the other player, and α is a given nonnegative
number. Player 1’s payoff to the action pair (Quiet, Quiet), for example, is 2 + 2α.

a. Formulate a strategic game that models this situation in the case α = 1. Is this
game the Prisoner’s Dilemma?

b. Find the range of values of α for which the resulting game is the Prisoner’s
Dilemma. For values of α for which the game is not the Prisoner’s Dilemma,
find its Nash equilibria.

? EXERCISE 25.2 (Selfish and altruistic social behavior) Two people enter a bus. Two
adjacent cramped seats are free. Each person must decide whether to sit or stand.
Sitting alone is more comfortable than sitting next to the other person, which is
more comfortable than standing.

a. Suppose that each person cares only about her own comfort. Model the situ-
ation as a strategic game. Is this game the Prisoner’s Dilemma? Find its Nash
equilibrium (equilibria?).

b. Suppose that each person is altruistic, ranking the outcomes according to the
other person’s comfort, and, out of politeness, prefers to stand than to sit if the
other person stands. Model the situation as a strategic game. Is this game the
Prisoner’s Dilemma? Find its Nash equilibrium (equilibria?).

c. Compare the people’s comfort in the equilibria of the two games.
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EXPERIMENTAL EVIDENCE ON THE Prisoner’s Dilemma

The Prisoner’s Dilemma has attracted a great deal of attention by economists, psy-
chologists, sociologists, and biologists. A huge number of experiments have been
conducted with the aim of discovering how people behave when playing the game.
Almost all these experiments involve each subject’s playing the game repeatedly
against an unchanging opponent, a situation that calls for an analysis significantly
different from the one in this chapter (see Chapter 14).

The evidence on the outcome of isolated plays of the game is inconclusive. No
experiment of which I am aware carefully induces the appropriate preferences and
is specifically designed to elicit a steady state action profile (see the box on page 22).
Thus in each case the choice of Quiet by a player could indicate that she is not
“selfish” or that she is not experienced in playing the game, rather than providing
evidence against the notion of Nash equilibrium.

In two experiments with very low payoffs, each subject played the game a small
number of times against different opponents; between 50% and 94% of subjects
chose Fink, depending on the relative sizes of the payoffs and some details of
the design (Rapoport, Guyer, and Gordon 1976, 135–137, 211–213, and 223-226).
A more recent experiment finds that in the last 10 of 20 rounds of play against
different opponents, 78% of subjects choose Fink (Cooper, DeJong, Forsythe, and
Ross 1996). In face-to-face games in which communication is allowed, the inci-
dence of the choice of Fink tends to be lower: from 29% to 70% depending on the
nature of the communication allowed (Deutsch 1958, and Frank, Gilovich, and Re-
gan 1993, 163–167). (In all these experiments, the subjects were college students in
the USA or Canada.)

One source of the variation in the results seems to be that some designs in-
duce preferences that differ from those of the Prisoner’s Dilemma; no clear answer
emerges to the question of whether the notion of Nash equilibrium is relevant to
the Prisoner’s Dilemma. If, nevertheless, one interprets the evidence as showing that
some subjects in the Prisoner’s Dilemma systematically choose Quiet rather than
Fink, one must fault the rational choice component of Nash equilibrium, not the
coordinated expectations component. Why? Because, as noted in the text, Fink is
optimal no matter what a player thinks her opponent will choose, so that any model
in which the players act according to the model of rational choice, whether or not
their expectations are coordinated, predicts that each player chooses Fink.

2.7.2 BoS

To find the Nash equilibria of BoS (Figure 16.1), we can examine each pair of actions
in turn:

• (Bach, Bach): If player 1 switches to Stravinsky then her payoff decreases from
2 to 0; if player 2 switches to Stravinsky then her payoff decreases from 1 to 0.
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Thus a deviation by either player decreases her payoff. Thus (Bach, Bach) is
a Nash equilibrium.

• (Bach, Stravinsky): If player 1 switches to Stravinsky then her payoff increases
from 0 to 1. Thus (Bach, Stravinsky) is not a Nash equilibrium. (Player 2
can increase her payoff by deviating, too, but to show the pair is not a Nash
equilibrium it suffices to show that one player can increase her payoff by
deviating.)

• (Stravinsky, Bach): If player 1 switches to Bach then her payoff increases from
0 to 2. Thus (Stravinsky, Bach) is not a Nash equilibrium.

• (Stravinsky, Stravinsky): If player 1 switches to Bach then her payoff decreases
from 1 to 0; if player 2 switches to Bach then her payoff decreases from 2 to 0.
Thus a deviation by either player decreases her payoff. Thus (Stravinsky, Stravinsky)
is a Nash equilibrium.

We conclude that the game has two Nash equilibria: (Bach, Bach) and (Stravinsky,
Stravinsky). That is, both of these outcomes are compatible with a steady state;
both outcomes are stable social norms. If, in every encounter, both players choose
Bach, then no player has an incentive to deviate; if, in every encounter, both play-
ers choose Stravinsky, then no player has an incentive to deviate. If we use the
game to model the choices of men when matched with women, for example, then
the notion of Nash equilibrium shows that two social norms are stable: both play-
ers choose the action associated with the outcome preferred by women, and both
players choose the action associated with the outcome preferred by men.

2.7.3 Matching Pennies

By checking each of the four pairs of actions in Matching Pennies (Figure 17.1) we
see that the game has no Nash equilibrium. For the pairs of actions (Head, Head)
and (Tail, Tail), player 2 is better off deviating; for the pairs of actions (Head, Tail)
and (Tail, Head), player 1 is better off deviating. Thus for this game the notion of
Nash equilibrium isolates no steady state. In Chapter 4 we return to this game;
an extension of the notion of a Nash equilibrium gives us an understanding of the
likely outcome.

2.7.4 The Stag Hunt

Inspection of Figure 18.1 shows that the two-player Stag Hunt has two Nash equi-
libria: (Stag, Stag) and (Hare, Hare). If one player remains attentive to the pursuit
of the stag, then the other player prefers to remain attentive; if one player chases
a hare, the other one prefers to chase a hare (she cannot catch a stag alone). (The
equilibria of the variant of the game in Figure 19.1 are analogous: (Refrain, Refrain)
and (Arm, Arm).)
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Unlike the Nash equilibria of BoS, one of these equilibria is better for both play-
ers than the other: each player prefers (Stag, Stag) to (Hare, Hare). This fact has no
bearing on the equilibrium status of (Hare, Hare), since the condition for an equi-
librium is that a single player cannot gain by deviating, given the other player’s be-
havior. Put differently, an equilibrium is immune to any unilateral deviation; coor-
dinated deviations by groups of players are not contemplated. However, the exis-
tence of two equilibria raises the possibility that one equilibrium might more likely
be the outcome of the game than the other. I return to this issue in Section 2.7.6.

I argue that the many-player Stag Hunt (Example 18.1) also has two Nash equi-
libria: the action profile (Stag, . . . , Stag) in which every players joins in the pursuit
of the stag, and the profile (Hare, . . . , Hare) in which every player catches a hare.

• (Stag, . . . , Stag) is a Nash equilibrium because each player prefers this profile
to that in which she alone chooses Hare. (A player is better off remaining
attentive to the pursuit of the stag than running after a hare if all the other
players remain attentive.)

• (Hare, . . . , Hare) is a Nash equilibrium because each player prefers this profile
to that in which she alone pursues the stag. (A player is better off catching a
hare than pursuing the stag if no one else pursues the stag.)

• No other profile is a Nash equilibrium, because in any other profile at least
one player chooses Stag and at least one player chooses Hare, so that any
player choosing Stag is better off switching to Hare. (A player is better off
catching a hare than pursing the stag if at least one other person chases a
hare, since the stag can be caught only if everyone pursues it.)

? EXERCISE 28.1 (Variants of the Stag Hunt) Consider two variants of the n-hunter
Stag Hunt in which only m hunters, with 2 ≤ m < n, need to pursue the stag in
order to catch it. (Continue to assume that there is a single stag.) Assume that a
captured stag is shared only by the hunters that catch it.

a. Assume, as before, that each hunter prefers the fraction 1/n of the stag to a
hare. Find the Nash equilibria of the strategic game that models this situation.

b. Assume that each hunter prefers the fraction 1/k of the stag to a hare, but
prefers the hare to any smaller fraction of the stag, where k is an integer with
m ≤ k ≤ n. Find the Nash equilibria of the strategic game that models this
situation.

The following more difficult exercise enriches the hunters’ choices in the Stag
Hunt. This extended game has been proposed as a model that captures Keynes’ ba-
sic insight about the possibility of multiple economic equilibria, some undesirable
(Bryant 1983, 1994).

?? EXERCISE 28.2 (Extension of the Stag hunt) Extend the n-hunter Stag Hunt by giv-
ing each hunter K (a positive integer) units of effort, which she can allocate be-
tween pursuing the stag and catching hares. Denote the effort hunter i devotes
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to pursuing the stag by ei, a nonnegative integer equal to at most K. The chance
that the stag is caught depends on the smallest of all the hunters’ efforts, denoted
minj ej. (“A chain is as strong as its weakest link.”) Hunter i’s payoff to the ac-
tion profile (e1, . . . , en) is 2 minj ej − ei. (She is better off the more likely the stag
is caught, and worse off the more effort she devotes to pursuing the stag, which
means she catches fewer hares.) Is the action profile (e, . . . , e), in which every
hunter devotes the same effort to pursuing the stag, a Nash equilibrium for any
value of e? (What is a player’s payoff to this profile? What is her payoff if she
deviates to a lower or higher effort level?) Is any action profile in which not all the
players’ effort levels are the same a Nash equilibrium? (Consider a player whose
effort exceeds the minimum effort level of all players. What happens to her payoff
if she reduces her effort level to the minimum?)

2.7.5 Hawk–Dove

The game in the next exercise captures a basic feature of animal conflict.

? EXERCISE 29.1 (Hawk–Dove) Two animals are fighting over some prey. Each can
be passive or aggressive. Each prefers to be aggressive if its opponent is passive,
and passive if its opponent is aggressive; given its own stance, it prefers the out-
come when its opponent is passive to that in which its opponent is aggressive.
Formulate this situation as a strategic game and find its Nash equilibria.

2.7.6 A coordination game

Consider two people who wish to go out together, but who, unlike the dissidents
in BoS, agree on the more desirable concert—say they both prefer Bach. A strate-
gic game that models this situation is shown in Figure 29.1; it is an example of a
coordination game. By examining the four action pairs, we see that the game has
two Nash equilibria: (Bach, Bach) and (Stravinsky, Stravinsky). In particular, the ac-
tion pair (Stravinsky, Stravinsky) in which both people choose their less-preferred
concert is a Nash equilibrium.

Bach Stravinsky
Bach 2, 2 0, 0

Stravinsky 0, 0 1, 1

Figure 29.1 A coordination game.

Is the equilibrium in which both people choose Stravinsky plausible? People
who argue that the technology of Apple computers originally dominated that of
IBM computers, and that the Beta format for video recording is better than VHS,
would say “yes”. In both cases users had a strong interest in adopting the same
standard, and one standard was better than the other; in the steady state that
emerged in each case, the inferior technology was adopted by a large majority
of users.
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FOCAL POINTS

In games with many Nash equilibria, the theory isolates more than one pattern of
behavior compatible with a steady state. In some games, some of these equilibria
seem more likely to attract the players’ attentions than others. To use the termi-
nology of Schelling (1960), some equilibria are focal. In the coordination game in
Figure 29.1, where the players agree on the more desirable Nash equilibrium and
obtain the same payoff to every nonequilibrium action pair, the preferable equi-
librium seems more likely to be focal (though two examples are given in the text
of steady states involving the inferior equilibrium). In the variant of this game in
which the two equilibria are equally good (i.e. (2, 2) is replaced by (1, 1)), nothing
in the structure of the game gives any clue as to which steady state might occur.
In such a game, the names or nature of the actions, or other information, may
predispose the players to one equilibrium rather than the other.

Consider, for example, voters in an election. Pre-election polls may give them in-
formation about each other’s intended actions, pointing them to one of many Nash
equilibria. Or consider a situation in which two players independently divide $100
into two piles, each receiving $10 if they choose the same divisions and nothing
otherwise. The strategic game that models this situation has many Nash equilib-
ria, in each of which both players choose the same division. But the equilibrium
in which both players choose the ($50, $50) division seems likely to command the
players’ attentions, possibly for esthetic reasons (it is an appealing division), and
possibly because it is a steady state in an unrelated game in which the chosen
division determines the players’ payoffs.

The theory of Nash equilibrium is neutral about the equilibrium that will occur
in a game with many equilibria. If features of the situation not modeled by the
notion of a strategic game make some equilibria focal then those equilibria may
be more likely to emerge as steady states, and the rate at which a steady state is
reached may be higher than it otherwise would have been.

If two people played this game in a laboratory it seems likely that the outcome
would be (Bach, Bach). Nevertheless, (Stravinsky, Stravinsky) also corresponds to a
steady state: if either action pair is reached, there is no reason for either player to
deviate from it.

2.7.7 Provision of a public good

The model in the next exercise captures an aspect of the provision of a “public
good”, like a park or a swimming pool, whose use by one person does not diminish
its value to another person (at least, not until it is overcrowded). (Other aspects of
public good provision are studied in Section 2.8.4.)
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? EXERCISE 31.1 (Contributing to a public good) Each of n people chooses whether
or not to contribute a fixed amount toward the provision of a public good. The
good is provided if and only if at least k people contribute, where 2 ≤ k ≤ n; if
it is not provided, contributions are not refunded. Each person ranks outcomes
from best to worst as follows: (i) any outcome in which the good is provided and
she does not contribute, (ii) any outcome in which the good is provided and she
contributes, (iii) any outcome in which the good is not provided and she does not
contribute, (iv) any outcome in which the good is not provided and she contributes.
Formulate this situation as a strategic game and find its Nash equilibria. (Is there a
Nash equilibrium in which more than k people contribute? One in which k people
contribute? One in which fewer than k people contribute? (Be careful!))

2.7.8 Strict and nonstrict equilibria

In all the Nash equilibria of the games we have studied so far a deviation by a
player leads to an outcome worse for that player than the equilibrium outcome.
The definition of Nash equilibrium (21.1), however, requires only that the outcome
of a deviation be no better for the deviant than the equilibrium outcome. And,
indeed, some games have equilibria in which a player is indifferent between her
equilibrium action and some other action, given the other players’ actions.

Consider the game in Figure 31.1. This game has a unique Nash equilibrium,
namely (T, L). (For every other pair of actions, one of the players is better off
changing her action.) When player 2 chooses L, as she does in this equilibrium,
player 1 is equally happy choosing T or B; if she deviates to B then she is no worse
off than she is in the equilibrium. We say that the Nash equilibrium (T, L) is not a
strict equilibrium.

L M R
T 1, 1 1, 0 0, 1
B 1, 0 0, 1 1, 0

Figure 31.1 A game with a unique Nash equilibrium, which is not a strict equilibrium.

For a general game, an equilibrium is strict if each player’s equilibrium action
is better than all her other actions, given the other players’ actions. Precisely, an
action profile a∗ is a strict Nash equilibrium if for every player i we have ui(a∗) >

ui(ai, a∗−i) for every action ai �= a∗i of player i. (Contrast the strict inequality in this
definition with the weak inequality in (21.2).)

2.7.9 Additional examples

The following exercises are more difficult than most of the previous ones. In the
first two, the number of actions of each player is arbitrary, so you cannot mechan-
ically examine each action profile individually, as we did for games in which each
player has two actions. Instead, you can consider groups of action profiles that
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have features in common, and show that all action profiles in any given group are
or are not equilibria. Deciding how best to group the profiles into types calls for
some intuition about the character of a likely equilibrium; the exercises contain
suggestions on how to proceed.

?? EXERCISE 32.1 (Guessing two-thirds of the average) Each of three people announces
an integer from 1 to K. If the three integers are different, the person whose integer
is closest to 2

3 of the average of the three integers wins $1. If two or more integers
are the same, $1 is split equally between the people whose integer is closest to 2

3
of the average integer. Is there any integer k such that the action profile (k, k, k), in
which every person announces the same integer k, is a Nash equilibrium? (If k ≥ 2,
what happens if a person announces a smaller number?) Is any other action profile
a Nash equilibrium? (What is the payoff of a person whose number is the highest
of the three? Can she increase this payoff by announcing a different number?)

Game theory is used widely in political science, especially in the study of elec-
tions. The game in the following exercise explores citizens’ costly decisions to
vote.

?? EXERCISE 32.2 (Voter participation) Two candidates, A and B, compete in an elec-
tion. Of the n citizens, k support candidate A and m (= n − k) support candidate B.
Each citizen decides whether to vote, at a cost, for the candidate she supports, or
to abstain. A citizen who abstains receives the payoff of 2 if the candidate she
supports wins, 1 if this candidate ties for first place, and 0 if this candidate loses.
A citizen who votes receives the payoffs 2 − c, 1 − c, and −c in these three cases,
where 0 < c < 1.

a. For k = m = 1, is the game the same (except for the names of the actions) as
any considered so far in this chapter?

b. For k = m, find the set of Nash equilibria. (Is the action profile in which
everyone votes a Nash equilibrium? Is there any Nash equilibrium in which
the candidates tie and not everyone votes? Is there any Nash equilibrium in
which one of the candidates wins by one vote? Is there any Nash equilibrium
in which one of the candidates wins by two or more votes?)

c. What is the set of Nash equilibria for k < m?

If, when sitting in a traffic jam, you have ever thought about the time you might
save if another road were built, the next exercise may lead you to think again.

?? EXERCISE 32.3 (Choosing a route) Four people must drive from A to B at the same
time. Two routes are available, one via X and one via Y. (Refer to the left panel of
Figure 33.1.) The roads from A to X, and from Y to B are both short and narrow;
in each case, one car takes 6 minutes, and each additional car increases the travel
time per car by 3 minutes. (If two cars drive from A to X, for example, each car takes
9 minutes.) The roads from A to Y, and from X to B are long and wide; on A to Y
one car takes 20 minutes, and each additional car increases the travel time per car



2.8 Best response functions 33

by 1 minute; on X to B one car takes 20 minutes, and each additional car increases
the travel time per car by 0.9 minutes. Formulate this situation as a strategic game
and find the Nash equilibria. (If all four people take one of the routes, can any of
them do better by taking the other route? What if three take one route and one
takes the other route, or if two take each route?)

6,9,12,15
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6,9,12,15
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20.9
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22.7

A X

BY

Original network.

6,9,12,15

20
21
22
23

6,9,12,15

20
20.9
21.8
22.7

7
8
9

10

A X

BY

Network with new road from X to Y.

Figure 33.1 Getting from A to B: the road networks in Exercise 32.3. The numbers beside each road are
the travel times per car when 1, 2, 3, or 4 cars take that road.

Now suppose that a relatively short, wide road is built from X to Y, giving each
person four options for travel from A to B: A–X–B, A–Y–B, A–X–Y–B, and A–Y–
X–B. Assume that a person who takes A–X–Y–B travels the A–X portion at the
same time as someone who takes A–X–B, and the Y–B portion at the same time as
someone who takes A–Y–B. (Think of there being constant flows of traffic.) On the
road between X and Y, one car takes 7 minutes and each additional car increases
the travel time per car by 1 minute. Find the Nash equilibria in this new situation.
Compare each person’s travel time with her travel time in the equilibrium before
the road from X to Y was built.

2.8 Best response functions

2.8.1 Definition

We can find the Nash equilibria of a game in which each player has only a few
actions by examining each action profile in turn to see if it satisfies the conditions
for equilibrium. In more complicated games, it is often better to work with the
players’ “best response functions”.

Consider a player, say player i. For any given actions of the players other than i,
player i’s actions yield her various payoffs. We are interested in the best actions—
those that yield her the highest payoff. In BoS, for example, Bach is the best action
for player 1 if player 2 chooses Bach; Stravinsky is the best action for player 1 if
player 2 chooses Stravinsky. In particular, in BoS, player 1 has a single best action
for each action of player 2. By contrast, in the game in Figure 31.1, both T and B are
best actions for player 1 if player 2 chooses L: they both yield the payoff of 1, and
player 1 has no action that yields a higher payoff (in fact, she has no other action).
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