# The Advantages and Disadvantages of BFGS, a Quasi-Newton Method 

Mitchell T. Scott<br>Emory University<br>Department of Mathematics

October 17, 2023
(1) Introduction
(2) BFGS Algorithm
(3) BFGS Examples
(4) Properties of BFGS
(5) Variations of BFGS

## References

RFGS in a Nutshell：An Introduction to Quasi－Newton Methods｜by Adrian Lam｜Towards Data Science．

圕 Large－Scale Unconstrained Optimization，in Numerical Optimization，J．Nocedal and S．J．Wright，eds．，Springer Series in Operations Research and Financial Engineering， Springer，New York，NY，2006，pp．164－192．

固 Quasi－Newton Methods，in Numerical Optimization， J．Nocedal and S．J．Wright，eds．，Springer Series in Operations Research and Financial Engineering，Springer，New York，NY，2006，pp．135－163．

围 M．T．Heath，Scientific Computing，Society for Industrial and Applied Mathematics，Philadelphia，PA， 2018. ＿eprint：
https：／／epubs．siam．org／doi／pdf／10．1137／1．9781611975581．

## Notation

- [3] is a great book, but it is universally agreed upon that the notation can be confusing ( $\mathrm{n}=2$ ).
- Instead, we will be using more of the notation used in [4]. The main players are below:
- $\mathbf{H}_{k}$ is the full Hessian at the $k^{\text {th }}$ step.
- $\mathbf{B}_{k}$ is the approximation of the Hessian at the $k^{\text {th }}$ step.
- $\mathbf{B}_{k}^{-1}$ is the approximation of the inverse Hessian at the $k^{\text {th }}$ step.
M. Chung, private communication, Emory University, Atlanta, GA., 2023


## Newton's Method for Minimization I

The question is to minimize $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, where $f \in \mathcal{C}^{2}$ over the entire domain, an unconstrained optimization problem.

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})
$$

We will Taylor expand this function

$$
f(\mathbf{x}+\mathbf{s}) \approx f(\mathbf{x})+\nabla f(\mathbf{x})^{\top} \mathbf{s}+\frac{1}{2} \mathbf{s}^{\top} \mathbf{H}_{f}(\mathbf{x}) \mathbf{s}+\mathcal{O}\left(\mathbf{s}^{3}\right)
$$

where $\mathbf{H}_{f}(\mathbf{x})$ is the Hessian matrix of second order partials of $f$.

## Newton's Method for Minimization II

This function is minimized in $\mathbf{s}$ when

$$
\mathbf{H}_{f}(\mathbf{x}) \mathbf{s}=-\nabla f(\mathbf{x})
$$

Recall the Hessian is the Jacobian of the gradient, so writing $\mathbf{g}:=\nabla f(\mathbf{x})$, we get

$$
\mathbf{J}_{g}(\mathbf{x}) \mathbf{s}=-\mathbf{g}(\mathbf{x}),
$$

which is a Newton step for $\mathbf{g}=\nabla f(\mathbf{x})=\mathbf{0}$. Essentially, Newton's method for optimization is a root finding algorithm for the stationary points of a function.

## Just use Newton? That's quasi-correct!

(1) Pros:
(1) Quadratic Convergence near the solution
(2) $\mathbf{H}$ is SPD near the solution
(2) Cons:
(1) Assuming dense $\mathbf{H}, \mathcal{O}\left(n^{2}\right)$ scalar function evals, and $\mathcal{O}\left(n^{3}\right)$ flops per iteration
(2) Requires second derivatives of $f$.

Enter quasi-Newton methods that work with $\mathbf{B}_{k}$, an approximation of $\mathbf{H}$, the true Hessian!
(1) Pros:
(1) Doesn't require second derivatives.
(2) $B$ is always SPD.
(3) Require only one gradient evaluation.

- Update the approximation and solve linear system in $\mathcal{O}\left(n^{2}\right)$
(2) Cons:
(1) Superlinear convergence


## Enter BFGS!



Figure: The founders of the BFGS alogirthm. From left to right: Broyden, Fletcher, Goldfarb, and Shanno.[1]

## Pseudocode for BFGS Implementation

## Require:

$\mathrm{x}_{0}=$ initial guess,
$\mathbf{B}_{0}=$ initial Hessian approximation
tol $=$ convergence requirement
while convergence requirement not met do
Solve $\mathbf{B}_{k} \mathbf{s}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$ for $\mathbf{s}_{k}$
$\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k}+\alpha_{k} \mathbf{s}_{k}$
$\mathbf{y}_{k} \leftarrow \nabla f\left(\mathbf{x}_{k+1}\right)-\nabla f\left(\mathbf{x}_{k}\right)$
$\mathbf{B}_{k+1} \leftarrow \mathbf{B}_{k}-\frac{\mathbf{B}_{k} \mathbf{s}_{\mathbf{k}} \mathbf{s}_{k}^{\top} \mathbf{B}_{k}}{\mathbf{s}_{k}^{\top} \mathbf{B}_{k} \mathbf{s}_{k}}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}}$ $k \leftarrow k+1$
end while

## Pseudocode for BFGS Implementation (Inverse Problem)

## Require:

$\mathrm{x}_{0}=$ initial guess,
$\mathbf{B}_{0}^{-1}=$ initial inverse Hessian approximation
tol $=$ convergence requirement
while convergence requirement not met do

$$
\begin{aligned}
& \mathbf{p}_{k} \leftarrow-\mathbf{B}_{k}^{-1} \nabla f\left(\mathbf{x}_{k}\right) \\
& \mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \\
& \mathbf{s}_{k} \leftarrow \mathbf{x}_{k+1}-\mathbf{x}_{k} \\
& \mathbf{y}_{k} \leftarrow \nabla f\left(\mathbf{x}_{k+1}\right)-\nabla f\left(\mathbf{x}_{k}\right) \\
& \mathbf{B}_{k+1}^{-1} \leftarrow\left(\mathbf{I}-\frac{\mathbf{s}_{k} \mathbf{y}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}}\right) \mathbf{B}_{k}^{-1}\left(\mathbf{I}-\frac{\mathbf{y}_{k} \mathbf{s}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}}\right)+\frac{\mathbf{s}_{k} \mathbf{s}_{k}^{\top}}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}} \\
& k \leftarrow k+1
\end{aligned}
$$

end while

## Rank-2 updates

Recall that $\mathbf{s}_{k}:=\mathbf{x}_{k+1}-\mathbf{x}_{k}, \mathbf{y}_{k}:=\nabla f\left(\mathbf{x}_{k+1}\right)-\nabla f\left(\mathbf{x}_{k}\right)$.

## Definition (Secant Equation)

We require that $\mathbf{B}_{k+1}$ satisfies $\mathbf{B}_{k+1} \mathbf{s}_{k}=\mathbf{y}_{k}$, which is a multidimensional secant equation. Similarly, we require $\mathbf{B}_{k+1}^{-1} \mathbf{y}_{k}=\mathbf{s}_{k}$ as an inverse secant equation.

## Definition (Curvature Condition)

For $\mathbf{B}_{k+1}$ to be SPD, the curvature condition needs to be satisfied

$$
\mathbf{s}_{k}^{\top} \mathbf{y}_{k}>0
$$

coming from premultiplying the secant equation by $\mathbf{s}_{k}^{\top}$,

$$
\mathbf{s}_{k}^{\top} \mathbf{B}_{k+1} \mathbf{s}_{k}=\mathbf{s}_{k}^{\top} \mathbf{y}_{k}>0
$$

## Initial Hessian approximation

How do we choose the initial Hessian or initial inverse Hessian?

## Theorem (Preservation of SPD structure over iterations)

 If $\mathbf{B}_{k}^{-1}$ is $S P D$, then both updates will produce an SPD $\mathbf{B}_{k+1}^{-1}$.
## Proof.

Let $\mathbf{z}$ be a nonzero vector, then

$$
\mathbf{z}^{\top} \mathbf{B}_{k+1}^{-1} \mathbf{z}=\left(\mathbf{z}-\frac{\mathbf{y}_{k}\left(\mathbf{s}_{k}^{\top} \mathbf{z}\right)}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}}\right) \mathbf{B}_{k}^{-1}\left(\mathbf{z}-\frac{\mathbf{y}_{k}\left(\mathbf{s}_{k}^{\top} \mathbf{z}\right)}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}}\right)+\frac{\left(\mathbf{z}^{\top} \mathbf{s}_{k}\right)^{2}}{\mathbf{y}_{k}^{\top} \mathbf{s}_{k}} \geq 0
$$



## Initial Hessian approximations

What are some SPD matrices that are used in practice?
(1) I
(1) Easy way to start off.
(3) First step is the vanilla steepest descent.
(2) $\gamma \mathbf{I}$ where $\gamma \in \mathbb{R}^{+}$
(1) $\gamma=\delta\left\|g_{0}\right\|^{-1}$
(2) $\gamma_{k}=\frac{\mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}}{\mathbf{y}_{k-1}^{\top} \mathbf{y}_{k-1}}$
(3) $\mathbf{H}$, the true Hessian
(1) Starts the algorithm off better.
(2) Expensive to compute.
(9) Something in between the two extremes like a finite difference approximation of $\mathbf{H}$.

## BFGS example[4]

Let

$$
f(\mathbf{x})=0.5 x_{1}^{2}+2.5 x_{2}^{2}, \text { with } \mathbf{x}_{0}=[5,1]^{\top}
$$

Clearly the gradient is given by

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
x_{1} \\
5 x_{2}
\end{array}\right]
$$

Assume $\mathbf{B}_{0}=\mathbf{I}$, which is equivalent to the first step being the steepest descent step, so

$$
\mathbf{x}_{1}=\mathbf{x}_{0}+\mathbf{s}_{0}=\left[\begin{array}{l}
5 \\
1
\end{array}\right]+\left[\begin{array}{l}
-5 \\
-5
\end{array}\right]=\left[\begin{array}{c}
0 \\
-4
\end{array}\right] .
$$

Exercise: Show that the approximate Hessian according to BFGS is

$$
\mathbf{B}_{1}=\left[\begin{array}{ll}
0.667 & 0.333 \\
0.333 & 4.667
\end{array}\right]
$$

## BFGS example, cont.

A new step is computed and the process continued. The resulting sequence of iterates are shown below.

| $k$ | $\mathbf{x}_{k}^{\top}$ | $f\left(\mathbf{x}_{k}\right)$ | $\nabla f\left(\mathbf{x}_{k}\right)^{\top}$ |
| :---: | :---: | :---: | :---: |
| 1 | 5.0001 .000 | 15.000 | 5.0005 .000 |
| 2 | $0.000-4.000$ | 40.000 | $0.000-20.000$ |
| 3 | -2.2220 .444 | 2.963 | -2.2222 .222 |
| 4 | 0.8160 .082 | 0.350 | 0.8160 .408 |
| 5 | $-0.009-0.015$ | 0.001 | $-0.009-0.077$ |
| 6 | -0.0010 .001 | 0.000 | -0.0010 .005 |

## BFGS example, cont.

BFGS on Quadratic Function


Figure: BFGS without linesearch converges superlinearly on $0.5 x_{1}^{2}+2.5 x_{2}^{2}$.

## Iterative Method Showdown (BFGS vs. SD vs. Newton)

- Comparing the three methods we know (and love) on the Rosenbrock function, $\mathbf{x}_{0}=[-1.2,1]^{\top}$, with Wolfe conditions (why?)
- [3] has iterates below with
- SD had 5264 iterations,
- BFGS had 34 iterations,
- Newton had 21 iterations.

| Steepest Descent | BFGS | Newton |
| :---: | :---: | :---: |
| $1.827 \mathrm{e}-04$ | $1.70 \mathrm{e}-03$ | $3.48 \mathrm{e}-02$ |
| $1.826 \mathrm{e}-04$ | $1.17 \mathrm{e}-03$ | $1.44 \mathrm{e}-02$ |
| $1.824 \mathrm{e}-04$ | $1.34 \mathrm{e}-04$ | $1.82 \mathrm{e}-04$ |
| $1.823 \mathrm{e}-04$ | $1.01 \mathrm{e}-06$ | $1.17 \mathrm{e}-08$ |

## The Showdown Continues

## Rosenbrock Function



Figure: SD maxed out at 500 iterations, BFGS had 29, and Newton 17.

## BFGS converges globally

## Theorem (Global Convergence of BFGS,[3])

Let $\mathbf{B}_{0}$ be any symmetric positive definite initial matrix. Let $x_{0}$ be a starting point where
(1) The objective function $f$ is twice continuously differentiable.
(2) The level set $\mathcal{L}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid f(\mathbf{x}) \leq f\left(\mathbf{x}_{0}\right)\right\}$ is convex, and there exist positive constants $m$ and $M$ such that

$$
m\|\mathbf{z}\|^{2} \leq \mathbf{z}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{z} \leq M\|\mathbf{z}\|^{2}, \forall \mathbf{z} \in \mathbb{R}^{n}, \mathbf{x} \in \mathcal{L}
$$

Then the sequence $\left\{\mathbf{x}_{k}\right\}$ generated by the BFGS algorithm (with tol $=0$ ) converges to the minimizer $\mathbf{x}^{*}$ of $f$.

## BFGS converges superlinearly

## Theorem (Superlinear Convergence of BFGS,[3])

Suppose that $f$ is twice continuously differentiable and that the iterates generated by the BFGS algorithm, converges to a minimizer $\mathbf{x}^{*}$ at which the Hessian matrix $\mathbf{H}$ is Lipschitz continuous at $\mathbf{x}^{*}$, that is,

$$
\left\|\mathbf{H}(\mathbf{x})-\mathbf{H}\left(\mathbf{x}^{*}\right)\right\| \leq L\left\|\mathbf{x}-\mathbf{x}^{*}\right\|, \forall \mathbf{x} \text { near } \mathbf{x}^{*}, L>0
$$

Suppose also that

$$
\sum_{k=1}^{\infty}\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|<\infty
$$

holds. Then $\mathbf{x}_{k}$ converges to $\mathbf{x}^{*}$ at a superlinear rate.

## What were we talking about? (Limited Memory BFGS)

- What happens if your problem is large scale, resulting in the storage of a large dense $\mathbf{B}_{k}^{-1}$ ?
- Instead, we store a modified version of $\mathbf{B}_{k}^{-1}$ by storing some vector pairs $\left\{\mathbf{s}_{i}, \mathbf{y}_{i}\right\}$ and doing inner products and vector sums.
- After the new iterate is computed, we discard the oldest vector pair, assuming the curvature information it encodes is not as valuable.


## L-BFGS Two-loop recursion

```
\(\mathbf{q} \leftarrow \nabla f_{k}\)
for \(i=k-1:-1: k-m\) do
    \(\alpha_{i} \leftarrow \rho_{i} \mathbf{s}_{i}^{\top} \mathbf{q}\)
    \(\mathbf{q} \leftarrow \mathbf{q}-\alpha_{i} \mathbf{y}_{i}\)
end for
\(\mathbf{r} \leftarrow\left(\mathbf{B}_{k}^{-1}\right)^{0} \mathbf{q}\)
for \(i=k-m: k-1\) do
    \(\beta \leftarrow \rho_{i} \mathbf{y}_{i}^{\top} \mathbf{r}\)
    \(\mathbf{r} \leftarrow \mathbf{r}+\mathbf{s}_{i}\left(\alpha_{i}-\beta_{i}\right)\)
end for
    return \(\mathbf{B}_{k}^{-1} \nabla f_{k}=\mathbf{r}_{k}\)
```


## L-BFGS Implementation

## Require:

$\mathbf{x}_{0}=$ initial guess,
$m \in \mathbb{Z}^{+}$, number of kept vector pairs ( $m=3-20$ in practice)
$k \leftarrow 0$
while Not Converged do
Choose $\left(\mathbf{B}_{k}^{-1}\right)^{0}$, could be $\frac{\left\langle\mathbf{s}_{k-1}, \mathbf{y}_{k-1}\right\rangle}{\left\langle\mathbf{y}_{k-1}, \mathbf{y}_{k-1}\right\rangle} \mathbf{I}$
Compute $\mathbf{p}_{k} \leftarrow \mathbf{B}_{k}^{-1} \nabla f_{k}=\mathbf{r}_{k}$

$$
\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}
$$

$\triangleright$ Wolfe-Powell Conditions
if $k>m$ then
Delete $\left\{\mathbf{s}_{k-m}, \mathbf{y}_{k-m}\right\}$
$\mathbf{s}_{k} \leftarrow \mathbf{x}_{k+1}-\mathbf{x}_{k}$
$\mathbf{y}_{k} \leftarrow \nabla f_{k+1}-\nabla f_{k}$
end if
$k \leftarrow k+1$

