The Advantages and Disadvantages of BFGS, a Quasi-Newton Method

Mitchell T. Scott

Emory University Department of Mathematics

October 17, 2023

- 2 BFGS Algorithm
- **3** BFGS Examples
- Properties of BFGS

Introduction •0000			
References	5		

- BFGS in a Nutshell: An Introduction to Quasi-Newton Methods | by Adrian Lam | Towards Data Science.
- Large-Scale Unconstrained Optimization, in Numerical Optimization, J. Nocedal and S. J. Wright, eds., Springer Series in Operations Research and Financial Engineering, Springer, New York, NY, 2006, pp. 164–192.
- Quasi-Newton Methods, in Numerical Optimization, J. Nocedal and S. J. Wright, eds., Springer Series in Operations Research and Financial Engineering, Springer, New York, NY, 2006, pp. 135–163.
- M. T. HEATH, *Scientific Computing*, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2018. _eprint:

https://epubs.siam.org/doi/pdf/10.1137/1.9781611975581

Introduction ○●○○○		
Notation		

- [3] is a great book, but it is universally agreed upon that the notation can be confusing (n=2).
- Instead, we will be using more of the notation used in [4]. The main players are below:
 - \mathbf{H}_k is the full Hessian at the k^{th} step.
 - \mathbf{B}_k is the approximation of the Hessian at the k^{th} step.
 - **B**_k⁻¹ is the approximation of the inverse Hessian at the kth step.

EMORY

M. CHUNG, private communication, Emory University, Atlanta, GA., 2023

Newton's Method for Minimization I

The question is to minimize $f : \mathbb{R}^d \to \mathbb{R}$, where $f \in C^2$ over the entire domain, an *unconstrained* optimization problem.

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})$

We will Taylor expand this function

$$f(\mathbf{x} + \mathbf{s}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} \mathbf{s} + \frac{1}{2} \mathbf{s}^{\top} \mathbf{H}_{f}(\mathbf{x}) \mathbf{s} + \mathcal{O}(\mathbf{s}^{3})$$

where $H_f(x)$ is the *Hessian matrix* of second order partials of f.

Introduction		
00000		

Newton's Method for Minimization II

This function is minimized in ${\boldsymbol{s}}$ when

$$\mathbf{H}_f(\mathbf{x})\mathbf{s} = -\nabla f(\mathbf{x})$$

Recall the Hessian is the Jacobian of the gradient, so writing $\mathbf{g} := \nabla f(\mathbf{x})$, we get

$$\mathbf{J}_g(\mathbf{x})\mathbf{s} = -\mathbf{g}(\mathbf{x}),$$

which is a Newton step for $\mathbf{g} = \nabla f(\mathbf{x}) = \mathbf{0}$. Essentially, Newton's method for optimization is a root finding algorithm for the stationary points of a function.

6 / 23

(Emory)

Introduction				
00000	000000	00000	00	000

Just use Newton? That's quasi-correct!

- Pros:
 - Quadratic Convergence near the solution
 - **2** H is SPD near the solution
- Ons:
 - Assuming dense **H**, $O(n^2)$ scalar function evals, and $O(n^3)$ flops per iteration
 - **2** Requires second derivatives of f.

Enter *quasi-Newton methods* that work with \mathbf{B}_k , an approximation of \mathbf{H} , the true Hessian!

O Pros:

- Doesn't require second derivatives.
- 8 is always SPD.
- **③** Require only one gradient evaluation.
- **()** Update the approximation and solve linear system in $\mathcal{O}(n^2)$
- 2 Cons:
 - Superlinear convergence

BFGS Algorithm

BFGS Examples

Properties of BFGS

Variations of BFGS

Enter BFGS!

Figure: The founders of the BFGS alogirthm. From left to right: Broyden, Fletcher, Goldfarb, and Shanno.[1]

BFGS Algorithm

	BFGS Algorithm			
00000	00000	00000	00	000

Pseudocode for BFGS Implementation

Require:

 $\mathbf{x}_0 = initial$ guess,

$$\mathbf{B}_0 = initial$$
 Hessian approximation

tol = convergence requirement

while convergence requirement not met do

Solve
$$\mathbf{B}_k \mathbf{s}_k = -\nabla f(\mathbf{x}_k)$$
 for \mathbf{s}_k

$$\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{s}_k$$
$$\mathbf{y}_k \leftarrow \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$$
$$\mathbf{B}_{k+1} \leftarrow \mathbf{B}_k - \frac{\mathbf{B}_k \mathbf{s}_k \mathbf{s}_k^\top \mathbf{B}_k}{\mathbf{s}_k^\top \mathbf{B}_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\top}{\mathbf{y}_k^\top \mathbf{s}_k}$$
$$k \leftarrow k+1$$

end while

(Emory)

Pseudocode for BFGS Implementation (Inverse Problem)

Require:

 $\mathbf{x}_0 = \text{initial guess},$ \mathbf{B}_{0}^{-1} = initial inverse Hessian approximation tol = convergence requirement while convergence requirement not met do $\mathbf{p}_k \leftarrow -\mathbf{B}_k^{-1} \nabla f(\mathbf{x}_k)$ $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{p}_k$ $\mathbf{s}_k \leftarrow \mathbf{x}_{k+1} - \mathbf{x}_k$ $\mathbf{y}_k \leftarrow \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$ $\mathbf{B}_{k+1}^{-1} \leftarrow \left(\mathbf{I} - \frac{\mathbf{s}_k \mathbf{y}_k^{\mathsf{T}}}{\mathbf{y}_{\scriptscriptstyle \perp}^{\mathsf{T}} \mathbf{s}_k}\right) \mathbf{B}_k^{-1} \left(\mathbf{I} - \frac{\mathbf{y}_k \mathbf{s}_k^{\mathsf{T}}}{\mathbf{v}_{\scriptscriptstyle \perp}^{\mathsf{T}} \mathbf{s}_k}\right) + \frac{\mathbf{s}_k \mathbf{s}_k^{\mathsf{T}}}{\mathbf{v}_{\scriptscriptstyle \perp}^{\mathsf{T}} \mathbf{s}_k}$ $k \leftarrow k + 1$ end while

BFGS Algorithm		
000000		

Rank-2 updates

Recall that
$$\mathbf{s}_k := \mathbf{x}_{k+1} - \mathbf{x}_k, \mathbf{y}_k := \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k).$$

Definition (Secant Equation)

We require that \mathbf{B}_{k+1} satisfies $\mathbf{B}_{k+1}\mathbf{s}_k = \mathbf{y}_k$, which is a multidimensional *secant equation*. Similarly, we require $\mathbf{B}_{k+1}^{-1}\mathbf{y}_k = \mathbf{s}_k$ as an *inverse secant equation*.

Definition (Curvature Condition)

For \mathbf{B}_{k+1} to be SPD, the *curvature condition* needs to be satisfied

$$\mathbf{s}_k^{\top}\mathbf{y}_k > 0.$$

coming from premultiplying the secant equation by \mathbf{s}_k^{\top} ,

$$\mathbf{s}_k^{\top} \mathbf{B}_{k+1} \mathbf{s}_k = \mathbf{s}_k^{\top} \mathbf{y}_k > 0.$$

M.T. Scott

(Emory)

ntroduction BFGS Algorithm BFGS Examples Properties of BFGS Variations of BFGS 00000 000000 00 00 00

Initial Hessian approximation

How do we choose the initial Hessian or initial inverse Hessian?

Theorem (Preservation of SPD structure over iterations)

If \mathbf{B}_{k}^{-1} is SPD, then both updates will produce an SPD \mathbf{B}_{k+1}^{-1} .

Proof.

Let \mathbf{z} be a nonzero vector, then

$$\mathbf{z}^{\top}\mathbf{B}_{k+1}^{-1}\mathbf{z} = \left(\mathbf{z} - \frac{\mathbf{y}_{k}\left(\mathbf{s}_{k}^{\top}\mathbf{z}\right)}{\mathbf{y}_{k}^{\top}\mathbf{s}_{k}}\right)\mathbf{B}_{k}^{-1}\left(\mathbf{z} - \frac{\mathbf{y}_{k}\left(\mathbf{s}_{k}^{\top}\mathbf{z}\right)}{\mathbf{y}_{k}^{\top}\mathbf{s}_{k}}\right) + \frac{\left(\mathbf{z}^{\top}\mathbf{s}_{k}\right)^{2}}{\mathbf{y}_{k}^{\top}\mathbf{s}_{k}} \ge 0$$

EMORY UNIVERSITY

BFGS Algorithm		
00000		

Initial Hessian approximations

What are some SPD matrices that are used in practice?

1

- Easy way to start off.
- **②** First step is the vanilla steepest descent.

2
$$\gamma$$
I where $\gamma \in \mathbb{R}^+$

•
$$\gamma = \delta \|g_0\|^{-1}$$

• $\gamma_k = \frac{\mathbf{s}_{k-1}^{\top} \mathbf{y}_{k-1}}{\mathbf{y}_{k-1}^{\top} \mathbf{y}_{k-1}}$

- **3** H, the true Hessian
 - Starts the algorithm off better.
 - Expensive to compute.
- Something in between the two extremes like a finite difference approximation of H.

		BFGS Examples ●0000	
BFGS e>	cample[4]		

Let

$$f(\mathbf{x}) = 0.5x_1^2 + 2.5x_2^2$$
, with $\mathbf{x}_0 = [5, 1]^{\top}$

Clearly the gradient is given by

$$abla f(\mathbf{x}) = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix}$$

Assume $\boldsymbol{B}_0=\boldsymbol{I},$ which is equivalent to the first step being the steepest descent step, so

$$\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{s}_0 = \begin{bmatrix} 5\\1 \end{bmatrix} + \begin{bmatrix} -5\\-5 \end{bmatrix} = \begin{bmatrix} 0\\-4 \end{bmatrix}.$$

Exercise: Show that the approximate Hessian according to BFGS is

$$\mathbf{B}_1 = \begin{bmatrix} 0.667 & 0.333 \\ 0.333 & 4.667 \end{bmatrix}$$

		BFGS Examples ○●○○○	
BEGS exa	mole cont		

A new step is computed and the process continued. The resulting sequence of iterates are shown below.

k	$ $ $\mathbf{x}_k^ op$	$f(\mathbf{x}_k)$	$ abla f(\mathbf{x}_k)^ op$
1	5.000 1.000	15.000	5.000 5.000
2	0.000 -4.000	40.000	0.000 -20.000
3	-2.222 0.444	2.963	-2.222 2.222
4	0.816 0.082	0.350	0.816 0.408
5	-0.009 -0.015	0.001	-0.009 -0.077
6	-0.001 0.001	0.000	-0.001 0.005

	BFGS Examples 00●00	

BFGS example, cont.

Figure: BFGS without linesearch converges superlinearly on $0.5x_1^2 + 2.5x_2^2$.

(Emory)

	BFGS Examples	
	00000	

Iterative Method Showdown (BFGS vs. SD vs. Newton)

- Comparing the three methods we know (and love) on the Rosenbrock function, $\mathbf{x}_0 = [-1.2, 1]^{\top}$, with Wolfe conditions (why?)
- [3] has iterates below with
 - SD had 5264 iterations,
 - BFGS had 34 iterations,
 - Newton had 21 iterations.

Steepest Descent	BFGS	Newton
1.827e-04	1.70e-03	3.48e-02
1.826e-04	1.17e-03	1.44e-02
1.824e-04	1.34e-04	1.82e-04
1.823e-04	1.01e-06	1.17e-08

	BFGS Examples	
	00000	

The Showdown Continues

Figure: SD maxed out at 500 iterations, BFGS had 29, and Newton 17.

M.T. Scott

(Emory)

BFGS Algorithm

October 17, 2023

	Properties of BFGS	
	•0	

BFGS converges globally

Theorem (Global Convergence of BFGS,[3])

Let \mathbf{B}_0 be any symmetric positive definite initial matrix. Let x_0 be a starting point where

- **1** The objective function f is twice continuously differentiable.
- **2** The level set $\mathcal{L} = {\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \le f(\mathbf{x}_0)}$ is convex, and there exist positive constants *m* and *M* such that

$$\|\mathbf{z}\|^2 \leq \mathbf{z}^\top \nabla^2 f(\mathbf{x}) \mathbf{z} \leq M \|\mathbf{z}\|^2, \forall \mathbf{z} \in \mathbb{R}^n, \mathbf{x} \in \mathcal{L}$$

Then the sequence $\{\mathbf{x}_k\}$ generated by the BFGS algorithm (with tol = 0) converges to the minimizer \mathbf{x}^* of f.

			Properties of BFGS	
00000	000000	00000	00	000

BFGS converges superlinearly

Theorem (Superlinear Convergence of BFGS,[3])

Suppose that f is twice continuously differentiable and that the iterates generated by the BFGS algorithm, converges to a minimizer x^* at which the Hessian matrix **H** is Lipschitz continuous at x^* , that is,

$$\|\mathbf{H}(\mathbf{x}) - \mathbf{H}(\mathbf{x}^*)\| \le L \|\mathbf{x} - \mathbf{x}^*\|, \forall \mathbf{x} \text{ near } \mathbf{x}^*, L > 0.$$

Suppose also that

$$\sum_{k=1}^{\infty} \|\mathbf{x}_k - \mathbf{x}^*\| < \infty$$

holds. Then \mathbf{x}_k converges to \mathbf{x}^* at a superlinear rate.

What were we talking about? (Limited Memory BFGS)

- What happens if your problem is large scale, resulting in the storage of a large dense B⁻¹_k?
- Instead, we store a modified version of B⁻¹_k by storing some vector pairs {s_i, y_i} and doing inner products and vector sums.
- After the new iterate is computed, we discard the oldest vector pair, assuming the curvature information it encodes is not as valuable.

		Variations of BFGS
		000

L-BFGS Two-loop recursion

$$\begin{split} \mathbf{q} \leftarrow \nabla f_k \\ \text{for } i = k - 1 : -1 : k - m \text{ do} \\ \alpha_i \leftarrow \rho_i \mathbf{s}_i^\top \mathbf{q} \\ \mathbf{q} \leftarrow \mathbf{q} - \alpha_i \mathbf{y}_i \\ \text{end for} \\ \mathbf{r} \leftarrow \left(\mathbf{B}_k^{-1}\right)^0 \mathbf{q} \\ \text{for } i = k - m : k - 1 \text{ do} \\ \beta \leftarrow \rho_i \mathbf{y}_i^\top \mathbf{r} \\ \mathbf{r} \leftarrow \mathbf{r} + \mathbf{s}_i \left(\alpha_i - \beta_i\right) \\ \text{end for} \\ \mathbf{return } \mathbf{B}_k^{-1} \nabla f_k = \mathbf{r}_k \end{split}$$

(Emory)

		Variations of BFGS

L-BFGS Implementation

Require:

 $\mathbf{x}_0 = initial$ guess, $m \in \mathbb{Z}^+$, number of kept vector pairs (m = 3 - 20 in practice) $k \leftarrow 0$ while Not Converged do Choose $(\mathbf{B}_k^{-1})^0$, could be $\frac{\langle \mathbf{s}_{k-1}, \mathbf{y}_{k-1} \rangle}{\langle \mathbf{y}_{k-1}, \mathbf{y}_{k-1} \rangle}$ Compute $\mathbf{p}_k \leftarrow \mathbf{B}_k^{-1} \nabla f_k = \mathbf{r}_k$ ▷ Wolfe-Powell Conditions $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{p}_k$ if k > m then Delete { $\mathbf{s}_{k-m}, \mathbf{v}_{k-m}$ } $\mathbf{s}_k \leftarrow \mathbf{x}_{k+1} - \mathbf{x}_k$ $\mathbf{v}_k \leftarrow \nabla f_{k+1} - \nabla f_k$ end if $k \leftarrow k + 1$ end while